Multiple exciton generation in quantum dot-based solar cells

被引:67
作者
Goodwin, Heather [1 ]
Jellicoe, Tom C. [1 ,2 ]
Davis, Nathaniel J. L. K. [1 ]
Bohm, Marcus L. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, J J Thomson Ave, Cambridge CB3 0HE, England
[2] Particle Works, Unit 3,Anglian Business Pk, Royston SG8 5TW, England
基金
英国工程与自然科学研究理事会;
关键词
multiple exciton generation; quantum dots; solar cells; ULTRAFAST ELECTRON-TRANSFER; DETAILED BALANCE LIMIT; CARRIER MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; IMPACT IONIZATION; PBSE NANOCRYSTALS; TRIPLET EXCITONS; COLLOIDAL NANOCRYSTALS; SILICON NANOCRYSTALS; SURFACE PASSIVATION;
D O I
10.1515/nanoph-2017-0034
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multiple exciton generation (MEG) in quantumconfined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one chargecarrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.
引用
收藏
页码:111 / 126
页数:16
相关论文
共 144 条
[1]   Highly efficient carrier multiplication in PbS nanosheets [J].
Aerts, Michiel ;
Bielewicz, Thomas ;
Klinke, Christian ;
Grozema, Ferdinand C. ;
Houtepen, Arjan J. ;
Schins, Juleon M. ;
Siebbeles, Laurens D. A. .
NATURE COMMUNICATIONS, 2014, 5
[2]   Cooling and Auger Recombination of Charges in PbSe Nanorods: Crossover from Cubic to Bimolecular Decay [J].
Aerts, Michiel ;
Spoor, Frank C. M. ;
Grozema, Ferdinand C. ;
Houtepen, Arjan J. ;
Schins, Juleon M. ;
Siebbeles, Laurens D. A. .
NANO LETTERS, 2013, 13 (09) :4380-4386
[3]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]  
Allan G, 2006, PHYS REV B, V73, P1
[5]   Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: Role of defects [J].
Allan, Guy ;
Delerue, Christophe .
PHYSICAL REVIEW B, 2009, 79 (19)
[6]   Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface [J].
Anderson, NA ;
Lian, TQ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2005, 56 :491-519
[7]  
Antoncik E, 1957, CZECH J PHYS, V7, P674
[8]   Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine [J].
Bae, Wan Ki ;
Joo, Jin ;
Padilha, Lazaro A. ;
Won, Jonghan ;
Lee, Doh C. ;
Lin, Qianglu ;
Koh, Weon-kyu ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :20160-20168
[9]  
Baker JL, 2010, NANO LETT, V10, P195, DOI [10.1021/nl903187v, 10.1021/nl903187V]
[10]   Charge Trapping Dynamics in PbS Colloidal Quantum Dot Photovoltaic Devices [J].
Bakulin, Artem A. ;
Neutzner, Stefanie ;
Bakker, Huib J. ;
Ottaviani, Laurent ;
Barakel, Damien ;
Chen, Zhuoying .
ACS NANO, 2013, 7 (10) :8771-8779