Linearly many faults in Cayley graphs generated by transposition trees

被引:104
作者
Cheng, Eddie [1 ]
Liptak, Laszlo [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
关键词
interconnection networks; star graph; bubble-sort graph; Cayley graphs; transposition tree; superconnectedness;
D O I
10.1016/j.ins.2007.05.034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that when linearly many vertices are deleted in a Cayley graph generated by a transposition tree, the resulting graph has a large connected component containing almost all remaining vertices. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:4877 / 4882
页数:6
相关论文
共 38 条
[1]  
Akers S. B., 1987, Proceedings of the 1987 International Conference on Parallel Processing, P393
[2]   A GROUP-THEORETIC MODEL FOR SYMMETRIC INTERCONNECTION NETWORKS [J].
AKERS, SB ;
KRISHNAMURTHY, B .
IEEE TRANSACTIONS ON COMPUTERS, 1989, 38 (04) :555-566
[3]  
ARAKI T, 2006, HYPER HAMILTONIAN LA, P121
[4]   A WELL-BEHAVED ENUMERATION OF STAR GRAPHS [J].
BAGHERZADEH, N ;
DOWD, M ;
LATIFI, S .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (05) :531-535
[5]   Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs [J].
Chang, JM ;
Yang, JS .
NETWORKS, 2004, 44 (04) :302-310
[6]   Super-connectivity and super-edge-connectivity for some interconnection networks [J].
Chen, YC ;
Tan, JJM ;
Hsu, LH ;
Kao, SS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) :245-254
[7]  
CHEN YC, UNPUB RESTRICTED CON
[8]   Maximal vertex-connectivity of (Sn,k)over-right-arrow [J].
Cheng, E ;
Lindsey, WA ;
Steffy, DE .
NETWORKS, 2005, 46 (03) :154-162
[9]   On the Day-Tripathi orientation of the star graphs: Connectivity [J].
Cheng, E ;
Lipman, MJ .
INFORMATION PROCESSING LETTERS, 2000, 73 (1-2) :5-10
[10]  
Cheng E, 2000, NETWORKS, V35, P139, DOI 10.1002/(SICI)1097-0037(200003)35:2<139::AID-NET4>3.0.CO