Hierarchical tensile structures with ultralow mechanical dissipation

被引:28
作者
Bereyhi, M. J. [1 ]
Beccari, A. [1 ]
Groth, R. [1 ]
Fedorov, S. A. [1 ]
Arabmoheghi, A. [1 ]
Kippenberg, T. J. [1 ]
Engelsen, N. J. [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
RESONATORS;
D O I
10.1038/s41467-022-30586-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural hierarchy is found in myriad biological systems and has improved man-made structures ranging from the Eiffel tower to optical cavities. In mechanical resonators whose rigidity is provided by static tension, structural hierarchy can reduce the dissipation of the fundamental mode to ultralow levels due to an unconventional form of soft clamping. Here, we apply hierarchical design to silicon nitride nanomechanical resonators and realize binary tree-shaped resonators with room temperature quality factors as high as 7.8 x 10(8) at 107 kHz frequency (1.1 x 10(9) at T= 6 K). The resonators' thermal-noise-limited force sensitivities reach 740 zN/Hz(1/2) at room temperature and 90 zN/Hz(1/2) at 6 K, surpassing state-of-the-art cantilevers currently used for force microscopy. Moreover, we demonstrate hierarchically structured, ultralow dissipation membranes suitable for interferometric position measurements in Fabry-Perot cavities. Hierarchical nanomechanical resonators open new avenues in force sensing, signal transduction and quantum optomechanics, where low dissipation is paramount and operation with the fundamental mode is often advantageous.
引用
收藏
页数:9
相关论文
共 47 条
  • [1] Giga-voxel computational morphogenesis for structural design
    Aage, Niels
    Andreassen, Erik
    Lazarov, Boyan S.
    Sigmund, Ole
    [J]. NATURE, 2017, 550 (7674) : 84 - +
  • [2] Strained crystalline nanomechanical resonators with quality factors above 10 billion
    Beccari, A.
    Visani, D. A.
    Fedorov, S. A.
    Bereyhi, M. J.
    Boureau, V.
    Engelsen, N. J.
    Kippenberg, T. J.
    [J]. NATURE PHYSICS, 2022, 18 (04) : 436 - +
  • [3] Beccari A., 2020, NANOFAB NET
  • [4] Bereyhi M., 2020, PHYS REV X, V12
  • [5] Braginsky V. B., 1985, SYSTEMS SMALL DISSIP
  • [6] Mechanical quantum sensing in the search for dark matter
    Carney, D.
    Krnjaic, G.
    Moore, D. C.
    Regal, C. A.
    Afek, G.
    Bhave, S.
    Brubaker, B.
    Corbitt, T.
    Cripe, J.
    Crisosto, N.
    Geraci, A.
    Ghosh, S.
    Harris, J. G. E.
    Hook, A.
    Kolb, E. W.
    Kunjummen, J.
    Lang, R. F.
    Li, T.
    Lin, T.
    Liu, Z.
    Lykken, J.
    Magrini, L.
    Manley, J.
    Matsumoto, N.
    Monte, A.
    Monteiro, F.
    Purdy, T.
    Riedel, C. J.
    Singh, R.
    Singh, S.
    Sinha, K.
    Taylor, J. M.
    Qin, J.
    Wilson, D. J.
    Zhao, Y.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
  • [7] Soft-Clamped Phononic Dimers for Mechanical Sensing and Transduction
    Catalini, Letizia
    Tsaturyan, Yeghishe
    Schliesser, Albert
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (01)
  • [8] Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities
    Choi, Hyeongrak
    Heuck, Mikkel
    Englund, Dirk
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (22)
  • [9] Biomimetic design of microfluidic manifolds based on a generalised Murray's law
    Emerson, DR
    Cieslicki, K
    Gu, XJ
    Barber, RW
    [J]. LAB ON A CHIP, 2006, 6 (03) : 447 - 454
  • [10] Fedorov S., 2020, THESIS EPFL