Application of Neural Network to GNSS-R Wind Speed Retrieval

被引:72
作者
Liu, Yunxiang [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado Boulder, Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 12期
关键词
Advanced Scatterometer (ASCAT); cyclone global navigation satellite system (CYGNSS); deep learning; delay-Doppler map (DDM); GNSS-reflectometry (GNSS-R); multi-hidden layer neural network (MHL-NN); spaceborne remote sensing; wind speed retrieval; GPS SIGNALS; OCEAN; SCATTERING;
D O I
10.1109/TGRS.2019.2929002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper applies a machine learning (ML) algorithm based on the multi-hidden layer neural network (MHL-NN) for ocean surface wind speed estimation using global navigation satellite system (GNSS) reflection measurements. Unlike conventional wind speed retrieval methods that often depend on limited scalar delay-Doppler map (DDM) observables, the proposed MHL-NN makes use of information captured by the entire DDM. Both simulated and real data sets are used to train and evaluate the performance of the MHL-NN and compare it to a conventional wind speed retrieval method and other prevailing ML algorithms. The results show that the MHL-NN algorithm outperforms the other methods in terms of the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the wind speed estimation.
引用
收藏
页码:9756 / 9766
页数:11
相关论文
共 36 条
[1]  
Abadi M., 2015, TENSORFLOW LARGESCAL
[2]  
[Anonymous], P GNSS R WORKSH
[3]  
[Anonymous], 2012, THESIS
[4]  
[Anonymous], 2006, Pattern Recognition and Machine Learning
[5]  
[Anonymous], COGN MODEL
[6]  
[Anonymous], P 21 INT C MACH LEAR
[7]  
[Anonymous], ADV NEURAL INFORM PR
[8]  
Chollet F., 2015, Keras
[9]   Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean [J].
Clarizia, M. P. ;
Gommenginger, C. P. ;
Gleason, S. T. ;
Srokosz, M. A. ;
Galdi, C. ;
Di Bisceglie, M. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[10]   Spaceborne GNSS-R Minimum Variance Wind Speed Estimator [J].
Clarizia, Maria Paola ;
Ruf, Christopher S. ;
Jales, Philip ;
Gommenginger, Christine .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11) :6829-6843