Application of Neural Network to GNSS-R Wind Speed Retrieval

被引:65
作者
Liu, Yunxiang [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado Boulder, Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 12期
关键词
Advanced Scatterometer (ASCAT); cyclone global navigation satellite system (CYGNSS); deep learning; delay-Doppler map (DDM); GNSS-reflectometry (GNSS-R); multi-hidden layer neural network (MHL-NN); spaceborne remote sensing; wind speed retrieval; GPS SIGNALS; OCEAN; SCATTERING;
D O I
10.1109/TGRS.2019.2929002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper applies a machine learning (ML) algorithm based on the multi-hidden layer neural network (MHL-NN) for ocean surface wind speed estimation using global navigation satellite system (GNSS) reflection measurements. Unlike conventional wind speed retrieval methods that often depend on limited scalar delay-Doppler map (DDM) observables, the proposed MHL-NN makes use of information captured by the entire DDM. Both simulated and real data sets are used to train and evaluate the performance of the MHL-NN and compare it to a conventional wind speed retrieval method and other prevailing ML algorithms. The results show that the MHL-NN algorithm outperforms the other methods in terms of the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the wind speed estimation.
引用
收藏
页码:9756 / 9766
页数:11
相关论文
共 36 条
  • [1] Abadi M., 2015, TENSORFLOW LARGESCAL
  • [2] [Anonymous], P GNSS R WORKSH
  • [3] [Anonymous], 2012, THESIS
  • [4] [Anonymous], 2006, Pattern Recognition and Machine Learning
  • [5] [Anonymous], COGN MODEL
  • [6] [Anonymous], P 21 INT C MACH LEAR
  • [7] [Anonymous], ADV NEURAL INFORM PR
  • [8] Chollet F., 2015, Keras
  • [9] Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean
    Clarizia, M. P.
    Gommenginger, C. P.
    Gleason, S. T.
    Srokosz, M. A.
    Galdi, C.
    Di Bisceglie, M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [10] Spaceborne GNSS-R Minimum Variance Wind Speed Estimator
    Clarizia, Maria Paola
    Ruf, Christopher S.
    Jales, Philip
    Gommenginger, Christine
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11): : 6829 - 6843