The Besov capacity in metric spaces

被引:10
作者
Nuutinen, Juho [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Besov spaces; capacity; metric spaces; TRIEBEL-LIZORKIN SPACES; SOBOLEV SPACES; EXTENSION;
D O I
10.4064/ap3843-4-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a capacity theory based on a definition of Hajlasz Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov-Hausdorff content. Important tools are gamma-medians, for which we also prove a new version of a Poincare type inequality.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 50 条
[41]   On Besov spaces of logarithmic smoothness and Lipschitz spaces [J].
Cobos, Fernando ;
Dominguez, Oscar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) :71-84
[42]   Nuclear Embeddings of Besov Spaces into Zygmund Spaces [J].
Cobos, Fernando ;
Edmunds, David E. ;
Kuehn, Thomas .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1600, 4 (01)
[43]   Approximation spaces, limiting interpolation and Besov spaces [J].
Cobos, Fernando ;
Dominguez, Oscar .
JOURNAL OF APPROXIMATION THEORY, 2015, 189 :43-66
[44]   Besov spaces and Herz spaces on local fields [J].
朱月萍 ;
郑维行 .
Science China Mathematics, 1998, (10) :1051-1060
[45]   Besov spaces and Herz spaces on local fields [J].
Yueping Zhu ;
Weixing Zheng .
Science in China Series A: Mathematics, 1998, 41 :1051-1060
[46]   A homogeneity property for Besov spaces [J].
Caetano, Antonio M. ;
Lopes, Sofia ;
Triebel, Hans .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2007, 5 (02) :123-132
[47]   Characterizations of anisotropic Besov spaces [J].
Barrios, B. ;
Betancor, J. J. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1796-1819
[48]   Nuclear Embeddings of Besov Spaces into Zygmund Spaces [J].
Fernando Cobos ;
David E. Edmunds ;
Thomas Kühn .
Journal of Fourier Analysis and Applications, 2020, 26
[49]   Besov spaces and Herz spaces on local fields [J].
Zhu, YP ;
Zheng, WX .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (10) :1051-1060
[50]   Besov spaces on spaces of homogeneous type and fractals [J].
Yang, DC .
STUDIA MATHEMATICA, 2003, 156 (01) :15-30