The Besov capacity in metric spaces

被引:10
作者
Nuutinen, Juho [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Besov spaces; capacity; metric spaces; TRIEBEL-LIZORKIN SPACES; SOBOLEV SPACES; EXTENSION;
D O I
10.4064/ap3843-4-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a capacity theory based on a definition of Hajlasz Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov-Hausdorff content. Important tools are gamma-medians, for which we also prove a new version of a Poincare type inequality.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 50 条
[1]   Besov and Triebel-Lizorkin Capacity in Metric Spaces [J].
Karak, Nijjwal ;
Mondal, Debarati .
MATHEMATICA SLOVACA, 2023, 73 (04) :937-948
[2]   Interpolation properties of Besov spaces defined on metric spaces [J].
Gogatishvili, Amiran ;
Koskela, Pekka ;
Shanmugalingam, Nageswari .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) :215-231
[3]   Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces [J].
Saksman, Eero ;
Soto, Tomas .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01) :98-115
[4]   Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces [J].
Gogatishvili, Amiran ;
Koskela, Pekka ;
Zhou, Yuan .
FORUM MATHEMATICUM, 2013, 25 (04) :787-819
[5]   HEAT KERNELS AND BESOV SPACES ON METRIC MEASURE SPACES [J].
Cao, Jun ;
Grigor'yan, Alexander .
JOURNAL D ANALYSE MATHEMATIQUE, 2022, 148 (02) :637-680
[7]   TRIEBEL-LIZORKIN CAPACITY AND HAUSDORFF MEASURE IN METRIC SPACES [J].
Karak, Nijjwal .
MATHEMATICA SLOVACA, 2020, 70 (03) :617-624
[8]   A Sobolev type embedding theorem for Besov spaces defined on doubling metric spaces [J].
Martin, Joaquim ;
Ortiz, Walter A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) :2302-2337
[9]   Finite dimensionality of Besov spaces and potential-theoretic decomposition of metric spaces [J].
Kumagai, Takashi ;
Shanmugalingam, Nageswari ;
Shimizu, Ryosuke .
ANNALES FENNICI MATHEMATICI, 2025, 50 (01) :347-369
[10]   Besov spaces and Hausdorff dimension for some Carnot-Caratheodory metric spaces [J].
Skrzypczak, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (06) :1280-1304