Learning-based Seat Belt Detection in Image Using Salient Gradient

被引:0
作者
Zhou, Bin [1 ,2 ]
Chen, Li [1 ,2 ]
Tian, Jing [1 ,2 ]
Peng, Zheng [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan, Hubei, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan, Hubei, Peoples R China
来源
PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA) | 2017年
基金
中国国家自然科学基金;
关键词
seat belt detection; edge detection; salient gradient; machine learning; EDGE-DETECTION; NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Seat belt detection is a critical challenge in traffic video surveillance. To tackle this challenge, an automatic seat belt detection approach is proposed in this paper. The proposed approach yields three significant steps. First, an edge detection method is used to extract edge features of the input image. Second, a salient gradient map is constructed by considering salient gradient features in the image. Finally, the obtained salient gradient map is incorporated into a machine learning approach to perform binary decision on whether the input image yields scat belt or not. Experimental results arc provided to demonstrate the superior performance of the proposed approach.
引用
收藏
页码:547 / 550
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 2002, IEEE T NEURAL NETWOR
[2]  
Barnes N, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P566
[4]   Dust particle detection in traffic surveillance video using motion singularity analysis [J].
Chen, Li ;
Zhu, Dawei ;
Tian, Jing ;
Liu, Jiaxiang .
DIGITAL SIGNAL PROCESSING, 2016, 58 :127-133
[5]   Driver's Seat Belt Detection in Crossroad Based on Gradient Orientation [J].
Yu, Dian ;
Zheng, Hong ;
Liu, Cao .
PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CLOUD COMPUTING COMPANION (ISCC-C), 2014, :618-622
[6]  
[葛如海 Ge Ruhai], 2012, [汽车工程, Automotive Engineering], V34, P787
[7]   CLASSIFICATION TREES WITH NEURAL NETWORK FEATURE-EXTRACTION [J].
GUO, H ;
GELFAND, SB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (06) :923-933
[8]  
Kuo WJ, 2007, 2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, P1427
[9]  
Lianqiang N., 2006, Proceedings of The Sixth World Congress on Intelligent Control and Automation (WCICA), P9533
[10]   Universal Approximation Using Radial-Basis-Function Networks [J].
Park, J. ;
Sandberg, I. W. .
NEURAL COMPUTATION, 1991, 3 (02) :246-257