A Stochastic Game Approach for PEV Charging Station Operation in Smart Grid

被引:38
作者
Liu, Yuan [1 ]
Deng, Ruilong [1 ]
Liang, Hao [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Charging station; Nash equilibrium; plugin electric vehicle (PEV); real time pricing (RTP); smart grid; stochastic game (SG); DEMAND-SIDE MANAGEMENT; POWER-FLOW; ELECTRICITY; VEHICLES; STRATEGY;
D O I
10.1109/TII.2017.2781226
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the future, smart grid charging stations will be critical infrastructures for plug-in electric vehicle (PEV) to replenish their batteries in a convenient way. Due to the ever-increasing penetration rate of PEVs, how to efficiently manage the loads of PEV charging stations to ensure system efficiency and reliability is amajor challenge faced by the distribution service providers (DSPs) in the smart grid. This challenge is further complicated by the highly dynamic PEV mobility, which results in random PEV arrivals, departures, and charging demands. In order to address this challenge, a stochastic game approach is proposed in this paper to characterize the interactions among DSP, charging stations, and PEV owners, where the randomness in charging decision making processes of PEV owners is modeled by a Markov decision process. Based on the Nash equilibrium solution of the stochastic game, a real time pricing scheme is proposed for the DSP to minimize power distribution losses while ensuring system reliability. The performance of the proposed approach is evaluated via extensive simulations based on the IEEE 123 bus test feeder with real vehicle mobility data fromthe 2009 National Household Travel Survey and the 2010 National Travel Survey.
引用
收藏
页码:969 / 979
页数:11
相关论文
共 36 条
[1]  
[Anonymous], EL RAT PRIC
[2]  
[Anonymous], 2007, DYNAMIC PROGRAMMING
[3]  
[Anonymous], 2010, 2010 IREP S BULK POW
[4]  
[Anonymous], INT COUNCIL CLEAN TR
[5]  
[Anonymous], IEEE T IND INFORM
[6]   Game Theoretic Based Charging Strategy for Plug-in Hybrid Electric Vehicles [J].
Bahrami, Shahab ;
Parniani, Mostafa .
IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (05) :2368-2375
[7]   Electric Power Allocation in a Network of Fast Charging Stations [J].
Bayram, I. Safak ;
Michailidis, George ;
Devetsikiotis, Michael ;
Granelli, Fabrizio .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (07) :1235-1246
[8]   Equilibrium pricing and optimal hedging in electricity forward markets [J].
Bessembinder, H ;
Lemmon, ML .
JOURNAL OF FINANCE, 2002, 57 (03) :1347-1382
[9]   On the Existence and Linear Approximation of the Power Flow Solution in Power Distribution Networks [J].
Bolognani, Saverio ;
Zampieri, Sandro .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) :163-172
[10]   Electrified Vehicles and the Smart Grid: The ITS Perspective [J].
Cheng, Xiang ;
Hu, Xiaoya ;
Yang, Liuqing ;
Husain, Iqbal ;
Inoue, Koichi ;
Krein, Philip ;
Lefevre, Russell ;
Li, Yaoyu ;
Nishi, Hiroaki ;
Taiber, Joachim G. ;
Wang, Fei-Yue ;
Zha, Yabing ;
Gao, Wen ;
Li, Zhengxi .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (04) :1388-1404