A joint model for longitudinal measurements and survival data in the presence of multiple failure types

被引:128
作者
Elashoff, Robert M. [1 ,2 ]
Li, Gang [1 ]
Li, Ning [2 ]
机构
[1] Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
关键词
cause-specific hazard; competing risks; EM algorithm; joint modeling; longitudinal data; mixed effects model;
D O I
10.1111/j.1541-0420.2007.00952.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel (Prentice et al., 1978, Biometrics 34, 541-554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.
引用
收藏
页码:762 / 771
页数:10
相关论文
共 32 条
[1]  
Brown ER, 2003, BIOMETRICS, V59, P221
[2]  
DEGRUTTOLA V, 1994, BIOMETRICS, V50, P1003, DOI 10.2307/2533439
[3]  
Faucett CL, 1996, STAT MED, V15, P1663, DOI 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO
[4]  
2-1
[5]  
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796
[6]  
Henderson R, 2000, Biostatistics, V1, P465, DOI 10.1093/biostatistics/1.4.465
[7]  
Hogan JW, 1997, STAT MED, V16, P259
[8]  
Kalbfleisch JD., 2002, STAT ANAL FAILURE TI
[9]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA [J].
LAIRD, NM ;
WARE, JH .
BIOMETRICS, 1982, 38 (04) :963-974
[10]   ROBUST STATISTICAL MODELING USING THE T-DISTRIBUTION [J].
LANGE, KL ;
LITTLE, RJA ;
TAYLOR, JMG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :881-896