On Deformations and Contractions of Lie Algebras

被引:9
作者
Fialowski, Alice [1 ]
De Montigny, Marc [2 ]
机构
[1] Eotvos Lorand Univ, Inst Math, H-1117 Budapest, Hungary
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6C 4G9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebras; deformations; contractions; Kac-Moody algebras;
D O I
10.3842/SIGMA.2006.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] THE CONSTRUCTIONS AND DEFORMATIONS OF NIJENHUIS OPERATORS ON 3-HOM-LIE ALGEBRAS
    Li, Yizheng
    Wang, Dingguo
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 127 - 143
  • [32] Contractions, deformations and curvature
    Ballesteros, Angel
    Herranz, Francisco J.
    Ragnisco, Orlando
    Santander, Mariano
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (03) : 649 - 663
  • [33] Contractions, Deformations and Curvature
    Ángel Ballesteros
    Francisco J. Herranz
    Orlando Ragnisco
    Mariano Santander
    International Journal of Theoretical Physics, 2008, 47 : 649 - 663
  • [34] Kinematical Lie Algebras and Invariant Functions of Algebras
    Escobar, J. M.
    Nunez, J.
    Perez-Fernandez, P.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (06) : 487 - 493
  • [35] The general structure of G-graded contractions of Lie algebras I. The classification
    Weimar-Woods, Evelyn
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (06): : 1291 - 1340
  • [36] 3-Bihom-?-Lie Algebras, 3-Pre-Bihom-?-Lie Algebras
    Bagheri, Zahra
    Peyghan, Esmaeil
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (02) : 193 - 208
  • [37] On S-expansions and other transformations of Lie algebras
    Alvarez, M. A.
    Rosales-Gomez, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (23)
  • [38] RIGID LIE ALGEBRAS AND ALGEBRAICITY
    Remm, Elisabeth
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (04): : 491 - 510
  • [39] On Deformations of Lie Algebroids
    Yunhe Sheng
    Results in Mathematics, 2012, 62 : 103 - 120
  • [40] On Deformations of Lie Algebroids
    Sheng, Yunhe
    RESULTS IN MATHEMATICS, 2012, 62 (1-2) : 103 - 120