ON STRONG COMMUTATIVITY PRESERVING LIKE MAPS IN RINGS WITH INVOLUTION

被引:24
作者
Ali, Shakir [1 ]
Dar, Nadeem Ahmad [2 ]
Khan, Abdul Nadim [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
prime ring; involution; derivation; strong commutativity preserving; GENERALIZED DERIVATIONS; SEMIPRIME RINGS; LIE IDEALS;
D O I
10.18514/MMN.2015.1297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to prove the following result: Let R be a prime ring with involution of the second kind and with char (R) not equal 2. If R admits a nonzero derivation d : R --> R such that [d(x), d(x*)] = [x, x*] for all x is an element of R, then R is commutative. We also provide an example which shows that the above result does not holds in case the involution is of the first kind. Moreover, a related result has also been obtained.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 23 条
[1]   On *-centralizing mappings in rings with involution [J].
Ali, Shakir ;
Dar, Nadeem Ahmed .
GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (01) :25-28
[2]   On Derivations in Semiprime Rings [J].
Ali, Shakir ;
Huang Shuliang .
ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) :1023-1033
[3]   On Commutativity of Rings With Derivations [J].
Ashraf M. ;
Rehman N.-U. .
Results in Mathematics, 2002, 42 (1-2) :3-8
[4]  
Bell H E., 1992, Math. J. Okayama Univ, V34, P135
[5]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[6]   ON DERIVATIONS AND COMMUTATIVITY IN PRIME-RINGS [J].
BELL, HE ;
DAIF, MN .
ACTA MATHEMATICA HUNGARICA, 1995, 66 (04) :337-343
[7]   ON COMMUTATIVITY AND STRONG COMMUTATIVITY-PRESERVING MAPS [J].
BELL, HE ;
DAIF, MN .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :443-447
[8]   STRONG COMMUTATIVITY PRESERVING-MAPS OF SEMIPRIME RINGS [J].
BRESAR, M ;
MIERS, CR .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :457-460
[9]  
Bresar M., 1993, T AM MATH SOC, V335, P525
[10]  
Divinsky N., 1995, T ROY SOC CANADA 3, V49, P19