Entropy Engineering and Tunable Magnetic Order in the Spinel High-Entropy Oxide

被引:57
|
作者
Johnstone, Graham H. J. [1 ,2 ]
Gonzalez-Rivas, Mario U. [1 ,2 ]
Taddei, Keith M. [3 ]
Sutarto, Ronny [4 ]
Sawatzky, George A. [1 ,2 ]
Green, Robert J. [2 ,5 ]
Oudah, Mohamed [1 ,2 ]
Hallas, Alannah M. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[4] Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
[5] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 加拿大健康研究院;
关键词
THERMODYNAMICS; DISTRIBUTIONS; INVERSION;
D O I
10.1021/jacs.2c06768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spinel oxides are an ideal setting to explore the interplay between configurational entropy, site selectivity, and magnetism in high-entropy oxides (HEOs). In this work, we characterize the magnetic properties of the spinel (Cr, Mn, Fe, Co, Ni)3O4 and study the evolution of its magnetism as a function of nonmagnetic gallium substitution. Across the range of compositions studied here, from 0 to 40% Ga, magnetic susceptibility and powder neutron diffraction measurements show that ferrimagnetic order is robust in the spinel HEO. However, we also find that the ferrimagnetic order is highly tunable, with the ordering temperature, saturated and sublattice moments, and magnetic hardness all varying significantly as a function of Ga concentration. Through X-ray absorption and magnetic circular dichroism, we are able to correlate this magnetic tunability with strong site selectivity between the various cations and the tetrahedral and octahedral sites in the spinel structure. In particular, we find that while Ni and Cr are largely unaffected by the substitution with Ga, the occupancies of Mn, Co, and Fe are each significantly redistributed. Ga substitution also requires an overall reduction in the transition metal valence, and this is entirely accommodated by Mn. Finally, we show that while site selectivity has an overall suppressing effect on the configurational entropy, over a certain range of compositions, Ga substitution yields a striking increase in the configurational entropy and may confer additional stabilization. Spinel oxides can be tuned seamlessly from the low-entropy to the high-entropy regime, making this an ideal platform for entropy engineering.
引用
收藏
页码:20590 / 20600
页数:11
相关论文
共 50 条
  • [1] Magnetic Texture in Insulating Single Crystal High Entropy Oxide Spinel Films
    Sharma, Yogesh
    Mazza, Alessandro R.
    Musico, Brianna L.
    Skoropata, Elizabeth
    Nepal, Roshan
    Jin, Rongying
    Ievlev, Anton, V
    Collins, Liam
    Gai, Zheng
    Chen, Aiping
    Brahlek, Matthew
    Keppens, Veerle
    Ward, Thomas Z.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (15) : 17971 - 17977
  • [2] Magnetic properties of the CrMnFeCoNi high-entropy alloy
    Schneeweiss, Oldrich
    Friak, Martin
    Dudova, Marie
    Holec, David
    Sob, Mojmir
    Kriegner, Dominik
    Holy, Vaclav
    Beran, Premysl
    George, Easo P.
    Neugebauer, Joerg
    Dlouhy, Antonin
    PHYSICAL REVIEW B, 2017, 96 (01)
  • [3] Do "high-entropy alloys" have high entropy?
    Kucza, Witold
    JOURNAL OF MATERIALS RESEARCH, 2025, : 1046 - 1055
  • [4] Synthesis of high-entropy materials
    Sun, Yifan
    Dai, Sheng
    NATURE SYNTHESIS, 2024, 3 (12): : 1457 - 1470
  • [5] Synthesis of (MgCoNiCuZn)O high-entropy oxide composites by microwave heating
    Lou, Yuanzheng
    Guan, Li
    Wang, Yanke
    Zhou, Xuemeng
    Li, Mingliang
    Zhao, Biao
    Gao, Qiancheng
    Zhang, Xinyue
    Wang, Hailong
    Zhang, Rui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (02)
  • [6] High-entropy high-hardness metal carbides discovered by entropy descriptors
    Sarker, Pranab
    Harrington, Tyler
    Toher, Cormac
    Oses, Corey
    Samiee, Mojtaba
    Maria, Jon-Paul
    Brenner, Donald W.
    Vecchio, Kenneth S.
    Curtarolo, Stefano
    NATURE COMMUNICATIONS, 2018, 9
  • [7] Elucidating Primary Degradation Mechanisms in High-Cycling-Capacity, Compositionally Tunable High-Entropy Hydrides
    Strozi, Renato Belli
    Witman, Matthew
    Stavila, Vitalie
    Cizek, Jakub
    Sakaki, Kouji
    Kim, Hyunjeong
    Melikhova, Oksana
    Perriere, Loic
    Machida, Akihiko
    Nakahira, Yuki
    Zepon, Guilherme
    Botta, Walter Jose
    Zlotea, Claudia
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (32) : 38412 - 38422
  • [8] Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
    Otto, F.
    Yang, Y.
    Bei, H.
    George, E. P.
    ACTA MATERIALIA, 2013, 61 (07) : 2628 - 2638
  • [9] Grain boundary segregation models for high-entropy alloys: Theoretical formulation and application to elucidate high-entropy grain boundaries
    Luo, Jian
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (16)
  • [10] Quasi-metallic high-entropy spinel oxides for full-spectrum solar energy harvesting
    Liu, Baohua
    He, Chengyu
    Li, Yang
    Li, Zhengtong
    Wang, Weiming
    Lu, Zhongwei
    Wang, Zengqiang
    Zhao, Shijie
    Liu, Gang
    Gao, Xianghu
    MATTER, 2024, 7 (01) : 140 - 157