ALGEBRAIC CUNTZ-KRIEGER ALGEBRAS

被引:0
作者
Nasr-Isfahani, Alireza [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, POB 81746-73441, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Leavitt path algebra; Cuntz-Krieger algebra; stably isomorphic; Morita equivalence; LEAVITT PATH ALGEBRAS; K-THEORY; CORNERS;
D O I
10.1017/S1446788719000375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a directed graph E is a finite graph with no sinks if and only if, for each commutative unital ring R, the Leavitt path algebra L-R(E) is isomorphic to an algebraic Cuntz-Krieger algebra if and only if the C*-algebra C* (E) is unital and rank(K-0(C* (E))) = rank(K-1(C* (E))). Let k be a field and k(x) be the group of units of k. When rank(k(x)) < infinity, we show that the Leavitt path algebra L-k(E) is isomorphic to an algebraic Cuntz-Krieger algebra if and only if L-k(E) is unital and rank(K-1(L-k (E))) = (rank(k(x)) + 1)rank(K-0(L-k(E))). We also show that any unital k-algebra which is Morita equivalent or stably isomorphic to an algebraic Cuntz-Krieger algebra, is isomorphic to an algebraic Cuntz-Krieger algebra. As a consequence, corners of algebraic Cuntz-Krieger algebras are algebraic Cuntz-Krieger algebras.
引用
收藏
页码:93 / 111
页数:19
相关论文
共 22 条
[1]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[2]   Flow invariants in the classification of Leavitt path algebras [J].
Abrams, Gene ;
Louly, Adel ;
Pardo, Enrique ;
Smith, Christopher .
JOURNAL OF ALGEBRA, 2011, 333 (01) :202-231
[3]   ISOMORPHISM AND MORITA EQUIVALENCE OF GRAPH ALGEBRAS [J].
Abrams, Gene ;
Tomforde, Mark .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) :3733-3767
[4]   Nonstable K-theory for graph algebras [J].
Ara, P. ;
Moreno, M. A. ;
Pardo, E. .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :157-178
[5]   Fractional skew monoid rings [J].
Ara, P ;
González-Barroso, MA ;
Goodearl, KR ;
Pardo, E .
JOURNAL OF ALGEBRA, 2004, 278 (01) :104-126
[6]  
Ara P, 2009, MUENSTER J MATH, V2, P5
[7]  
Pino GA, 2010, REV MAT IBEROAM, V26, P611
[8]  
Arklint SE, 2015, T AM MATH SOC, V367, P7595
[9]   The commutative core of a Leavitt path algebra [J].
Canto, Cristobal Gil ;
Nasr-Isfahani, Alireza .
JOURNAL OF ALGEBRA, 2018, 511 :227-248
[10]  
Crisp T, 2008, J OPERAT THEOR, V60, P253