Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis

被引:171
作者
Sun, Lina [1 ,2 ]
Tuo, Jincai [1 ]
Zhang, Mingfeng [1 ]
Wu, Chenjun [1 ]
Wang, Zixiang [1 ,2 ]
Zheng, Youwei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources, Gansu Prov Key Lab Petr Resources Res, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Oil-shale; Hydrous pyrolysis; Nitrogen adsorption; Organic matter evolution; Pore structure; GAS-ADSORPTION; KINETIC-PARAMETERS; WOODFORD SHALE; BARNETT SHALE; RICH SHALES; POROSITY; SYSTEM; TOARCIAN; BITUMEN;
D O I
10.1016/j.fuel.2015.05.061
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To obtain information about the pore characterization during the evolution of sedimentary organic matter, the pore structures of residual samples from oil-shale hydrous pyrolysis experiments were analyzed via low-pressure nitrogen adsorption measurements. These seven experiments were conducted at different temperatures, while other experiment factors, such as original samples, the heating time and rate, the lithostatic pressure and the hydrodynamic pressure, were kept same. Nitrogen adsorption measurements were performed on unheated samples and other solid residues after pyrolysis at different simulation temperatures to analyze and characterize the nature of the pore structure. The results showed that Type IV nitrogen adsorption isotherms with Type H3 hysteresis loops are present in these samples, so mesopores may be predominant. With increasing pyrolysis temperature, the quantity of nitrogen adsorbed generally presents an increasing trend at a relative P/P-0 value of approximately 0.996 MPa. The total pore volume and specific surface area were positively correlated with the pyrolysis temperature, and their correlation coefficients (R-2) were 0.91 and 0.83, respectively. The pore volume and surface area of the micropores, mesopores and macropores all increased, as did the quantities of the corresponding pores. By combining the different scales of pore development with the pyrolysis products, a model for the stages of porosity evolution was acquired. With the increasing simulation temperature, the changing of porosity calculated roughly by the decreased amount of TOC present a same tendency with the measured values by N-2 adsorption method. But the relative deviation between them was higher in lower maturity, the opposite occurred in higher maturity. Therefore, the effect of TOC on the evolution of pore structure may be related to the maturity. And the pore connectivity which resulted from the generation and migration of pyrolysis products, can be seen as the important factor on the increased porosity. In further level, shale oil-gas were better preserved in lower maturity, but likely to migrate in higher thermal evolution. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:549 / 557
页数:9
相关论文
共 46 条
  • [1] [Anonymous], 1984, PETROLEUM FORMATION
  • [2] [Anonymous], 1978, PETROLEUM FORMATION, DOI DOI 10.1007/978-3-642-96446-6
  • [3] Study on the Pore Structure of Oil Shale During Low-Temperature Pyrolysis
    Bai, Jingru
    Wang, Qing
    Jiao, Guojun
    [J]. 2012 INTERNATIONAL CONFERENCE ON FUTURE ELECTRICAL POWER AND ENERGY SYSTEM, PT B, 2012, 17 : 1689 - 1696
  • [4] THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS
    BARRETT, EP
    JOYNER, LG
    HALENDA, PP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) : 373 - 380
  • [5] Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation
    Behar, F
    Vandenbroucke, M
    Tang, Y
    Marquis, F
    Espitalie, J
    [J]. ORGANIC GEOCHEMISTRY, 1997, 26 (5-6) : 321 - 339
  • [6] Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)
    Bernard, Sylvain
    Horsfield, Brian
    Schulz, Hans-Martin
    Wirth, Richard
    Schreiber, Anja
    Sherwood, Neil
    [J]. MARINE AND PETROLEUM GEOLOGY, 2012, 31 (01) : 70 - 89
  • [7] Adsorption of gases in multimolecular layers
    Brunauer, S
    Emmett, PH
    Teller, E
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 : 309 - 319
  • [8] Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity
    Chalmers, Gareth R. L.
    Bustin, R. Marc
    [J]. BULLETIN OF CANADIAN PETROLEUM GEOLOGY, 2008, 56 (01) : 1 - 21
  • [9] Evolution of nanoporosity in organic-rich shales during thermal maturation
    Chen, Ji
    Xiao, Xianming
    [J]. FUEL, 2014, 129 : 173 - 181
  • [10] Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion
    Clarkson, C. R.
    Solano, N.
    Bustin, R. M.
    Bustin, A. M. M.
    Chalmers, G. R. L.
    He, L.
    Melnichenko, Y. B.
    Radlinski, A. P.
    Blach, T. P.
    [J]. FUEL, 2013, 103 : 606 - 616