Regularity of very weak solutions for elliptic equation of divergence form

被引:8
作者
Zhang, Wei [1 ]
Bao, Jiguang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Very weak solution; Regularity; Linear elliptic equation; Sobolev space; BOUNDARY SINGULARITIES; DISTANCE; RESPECT;
D O I
10.1016/j.jfa.2011.11.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the local regularity of very weak solution mu is an element of L-loc(1)(ohm) of the elliptic equation D-j(a(ij)(x)D(i)u) = 0. Using the bootstrap argument and the difference quotient method, we obtain that if a(ij) is an element of C-loc(0,1)(ohm), then u is an element of W-loc(2,p)(ohm) for any p < infinity. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1867 / 1878
页数:12
相关论文
共 20 条
[1]   Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Haim Brezis) [J].
Ancona, Alano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) :2124-2158
[2]  
[Anonymous], 1998, TRANSLATIONS MATH MO
[3]  
Brezis H., 1996, ADV DIFFERENTIAL EQU, V1, P73
[4]  
Brezis H, 2008, REND LINCEI-MAT APPL, V19, P335
[5]   Weak eigenfunctions for the linearization of extremal elliptic problems [J].
Cabre, X ;
Martel, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) :30-56
[6]  
De Giorgi E., 1957, Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., V3, P25
[7]   Boundary singularities for weak solutions of semilinear elliptic problems [J].
del Pino, Manuel ;
Musso, Monica ;
Pacard, Frank .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (01) :241-272
[8]   On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary [J].
Diaz, J. I. ;
Rakotoson, J. M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) :807-831
[9]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[10]  
Hager RA, 1971, ANN SC NORM SUPER PI, V23, P283