Formation of Ripples in Graphene as a Result of Interfacial Instabilities

被引:98
作者
Paronyan, Tereza M. [1 ]
Pigos, Elena M. [1 ]
Chen, Gugang [1 ]
Harutyunyan, Avetik R. [1 ]
机构
[1] Honda Res Inst USA Inc, Columbus, OH 43212 USA
关键词
graphene; scanning electron microscopy; ripple formation; solutal instability; MARANGONI INSTABILITY; SUSPENDED GRAPHENE; SURFACE; CARBON; COPPER; SOLIDIFICATION; STABILITY; DRIVEN; GROWTH; PHASE;
D O I
10.1021/nn202972f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Formation of ripples on a supported graphene sheet involves interfacial interaction with the substrate. In this work, graphene was grown on a copper foil by chemical vapor deposition from methane. On thermal quenching from elevated temperatures, we observed the formation of ripples Ingrown graphene, developing a peculiar topographic pattern in the form of wavy grooves and single/double rolls, roughly honeycomb cells, or their combinations. Studies on pure copper foil under corresponding conditions but without the presence of hydrocarbon revealed the appearance of peculiar patterns on the foil surface, such as dendritic structures that are distinctive not of equilibrium solidified phases but arise from planar and/or convective instabilities driven by solutal and thermal capillary forces. We propose a new origin for the formation of ripples in the course of graphene growth at elevated temperatures, where the topographic pattern formation is governed by dynamic instabilities on the interface of a carbon catalyst binary system. These non-equilibrium processes can be described based on Mullins-Sekerka and Benard-Marangoni instabilities In diluted binary alloys, which offer control over the ripple texturing through synthesis parameters such as temperature, imposed temperature gradient, quenching rate, diffusion coefficients of carbon In the metal catalyst, and the miscibility gap of the metal catalyst-carbon system.
引用
收藏
页码:9619 / 9627
页数:9
相关论文
共 44 条
[1]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]  
BOEHM HP, 1962, Z NATURFORSCH PT B, VB 17, P150
[4]   NONLINEAR SOLUTAL MARANGONI INSTABILITY IN A LIQUID LAYER WITH AN ADSORBING UPPER SURFACE [J].
BRAGARD, J ;
SLAVTCHEV, SG ;
LEBON, G .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 168 (02) :402-413
[5]   Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects [J].
Cervenka, J. ;
Katsnelson, M. I. ;
Flipse, C. F. J. .
NATURE PHYSICS, 2009, 5 (11) :840-844
[6]   Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects [J].
Cervenka, J. ;
Flipse, C. F. J. .
PHYSICAL REVIEW B, 2009, 79 (19)
[7]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[8]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191