Performance of "Polymer-in-Salt" Electrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler

被引:58
作者
Wu, Bo [1 ]
Wang, Liping [1 ]
Li, Zhiling [1 ]
Zhao, Mingjuan [1 ]
Chen, Kaihao [1 ]
Liu, Sihong [1 ]
Pu, Yunqiang [1 ]
Li, Jingze [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[2] Sichuan Univ, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
LITHIUM BATTERIES; IONIC-CONDUCTIVITY; HIGH-VOLTAGE; ACRYLATE COPOLYMERS; SECONDARY BATTERIES; BUTYL ACRYLATE; TRANSPORT; PARTICLES; MECHANISM; MEMBRANES;
D O I
10.1149/2.0531610jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Exploring solid state electrolytes with high ionic conductivity and good electrochemical stability is of prime importance for the development of safe batteries. In this study, we prepare a high-performance "polymer-in-salt" solid polymer electrolyte (SPE) by using polyacrylonitrile (PAN) as a host polymer, bistrifluoromethanesulfonimide lithium salt (LiTFSI) as an electrolyte salt, and different loading graphene oxide (GO) as a nano-filler. PAN-LiTFSI electrolyte filled with 0.9 wt% GO nanosheet exhibits an ionic conductivity of 1.1 x 10(-4) S cm(-1) at 30 degrees C, which is almost one order of magnitude higher than that of the filler-free one. In addition, the anodic potential and the lithium ion transference number also increase to 5 V and 0.4, respectively. The enhancement on ionic conductivity is attributed to a 3D fast ion transport network constructed by GO nanosheets and a further decoupling of ion transport from segmental dynamics. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2248 / A2252
页数:5
相关论文
共 46 条
[1]   RUBBERY SOLID ELECTROLYTES WITH DOMINANT CATIONIC TRANSPORT AND HIGH AMBIENT CONDUCTIVITY [J].
ANGELL, CA ;
LIU, C ;
SANCHEZ, E .
NATURE, 1993, 362 (6416) :137-139
[2]   Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers [J].
Bajaj, P ;
Sreekumar, TV ;
Sen, K .
POLYMER, 2001, 42 (04) :1707-1718
[3]   Ion-molecular and ion-ion interactions in solvent-free polymer electrolytes based on amorphous butadiene -: acrylontrile copolymer and LiAsF6 [J].
Bushkova, O. V. ;
Popov, S. E. ;
Yaroslavtseva, T. V. ;
Zhukovsk, V. M. ;
Nikiforov, A. E. .
SOLID STATE IONICS, 2008, 178 (35-36) :1817-1830
[4]   Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery [J].
Chen-Yang, Y. W. ;
Chen, Y. T. ;
Chen, H. C. ;
Lin, W. T. ;
Tsai, C. H. .
POLYMER, 2009, 50 (13) :2856-2862
[5]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[6]   Improved Electrochemical Performance of LiCoO2 Electrodes with ZnO Coating by Radio Frequency Magnetron Sputtering [J].
Dai, Xinyi ;
Wang, Liping ;
Xu, Jin ;
Wang, Ying ;
Zhou, Aijun ;
Li, Jingze .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15853-15859
[7]   Polymer electrolytes based on acrylonitrile-butyl acrylate copolymers and lithium bis(trifluoromethanesulfone)imide [J].
Florjanczyk, Z ;
Zygadlo-Monikowska, E ;
Affek, A ;
Tomaszewska, A ;
Lasinska, A ;
Marzantowicz, M ;
Dygas, JR ;
Krok, F .
SOLID STATE IONICS, 2005, 176 (25-28) :2123-2128
[8]   Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts [J].
Florjanczyk, Z ;
Zygadlo-Monikowska, E ;
Wieczorek, W ;
Ryszawy, A ;
Tomaszewska, A ;
Fredman, K ;
Golodnitsky, D ;
Peled, E ;
Scrosati, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (39) :14907-14914
[9]   Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide [J].
Gao, Shu ;
Zhong, Jiang ;
Xue, Guobin ;
Wang, Bo .
JOURNAL OF MEMBRANE SCIENCE, 2014, 470 :316-322
[10]   Review-On Order and Disorder in Polymer Electrolytes [J].
Golodnitsky, D. ;
Strauss, E. ;
Peled, E. ;
Greenbaum, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2551-A2566