Asymptotically good quasi-cyclic codes of fractional index

被引:18
作者
Mi, Jiafu [1 ]
Cao, Xiwang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-cyclic codes; Fractional index; Random codes; Asymptotically good codes;
D O I
10.1016/j.disc.2017.08.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing the quasi-cyclic codes of index 13 introduced by Fan et al., we study a more general class of quasi-cyclic codes of fractional index generated by pairs of polynomials. The parity check polynomial and encoder of these codes are obtained. The asymptotic behaviours of the rates and relative distances of this class of codes are studied by using a probabilistic method. We prove that, for any positive real number delta such that the asymptotic GV-bound at k+1/2 delta is greater than 1/2, the relative distance of the code is convergent to delta, while the rate is convergent to 1/k+1 As a result, quasi-cyclic codes of fractional index are asymptotically good. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 314
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]   Some randomized code constructions from group actions [J].
Bazzi, Louay A. J. ;
Mitter, Sanjoy K. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) :3210-3219
[3]   SOME RESULTS ON QUASI-CYCLIC CODES [J].
CHEN, CL ;
PETERSON, WW .
INFORMATION AND CONTROL, 1969, 15 (05) :407-&
[4]  
Chepyzhov V. V., 1992, PROBL PEREDACHI INF, V28, P39
[5]   Codes closed under arbitrary abelian group of permutations [J].
Dey, BK ;
Rajan, BS .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) :1-18
[6]   Quasi-Cyclic Codes of Index 1 1/3 [J].
Fan, Yun ;
Liu, Hualu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) :6342-6347
[7]   Thresholds of Random Quasi-Abelian Codes [J].
Fan, Yun ;
Lin, Liren .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) :82-90
[8]  
Fan Yun, 2016, ARXIV160106872
[9]   GILBERT-VARSHAMOV BOUND FOR QUASI-CYCLIC CODES OF RATE 1-2 [J].
KASAMI, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (05) :679-679
[10]  
Lin Lin, 2014, THESIS