Multiplicity and Concentration Results for Fractional Schrodinger-Poisson Equations with Magnetic Fields and Critical Growth

被引:9
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 206, I-33100 Udine, Italy
关键词
Fractional magnetic operators; Schrodinger-Poisson equation; Critical exponent; Variational methods; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; SEMICLASSICAL SOLUTIONS; STANDING WAVES; GROUND-STATES; MOUNTAIN-PASS; EXISTENCE; SYSTEM; LIMIT;
D O I
10.1007/s11118-018-9751-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the following fractional Schrodinger-Poisson equation with magnetic field epsilon 2s(-Delta)A/epsilon su+V(x)u+epsilon-2t(|x|2t-3*|u|2)u=f(|u|2)u+|u|2s*-2uin Double-struck capital R3,{R}<^>{3}, where epsilon > 0 is a small parameter, s is an element of(34,1), t is an element of (0, 1), 2s*=63-2s is the fractional critical exponent, (-Delta)As is the fractional magnetic Laplacian, V:Double-struck capital R3 -> Double-struck capital R is a positive continuous potential, A:Double-struck capital R3 -> Double-struck capital R3 is a smooth magnetic potential and f:Double-struck capital R -> Double-struck capital R is a subcritical nonlinearity. Under a local condition on the potential V, we study the multiplicity and concentration of nontrivial solutions as epsilon -> 0. In particular, we relate the number of nontrivial solutions with the topology of the set where the potential V attains its minimum.
引用
收藏
页码:565 / 600
页数:36
相关论文
共 62 条
  • [1] Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Yang, Minbo
    [J]. ASYMPTOTIC ANALYSIS, 2016, 96 (02) : 135 - 159
  • [2] Multiple Solutions for a Nonlinear Schrodinger Equation with Magnetic Fields
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Furtado, Marcelo F.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) : 1565 - 1586
  • [3] Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition
    Alves, Claudianor O.
    Soares Souto, Marco Aurelio
    Soares, Sergio H. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 584 - 592
  • [4] Local mountain-pass for a class of elliptic problems in RN involving critical growth
    Alves, CO
    do O, JM
    Souto, MAS
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (04) : 495 - 510
  • [5] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [6] Ambrosio V, REV MAT IBEROAM
  • [7] CONCENTRATION PHENOMENA FOR CRITICAL FRACTIONAL SCHRODINGER SYSTEMS
    Ambrosio, Vincenzo
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 2085 - 2123
  • [8] Ambrosio V, 2018, ADV DIFFERENTIAL EQU, V23, P455
  • [9] Nonlinear fractional magnetic Schrodinger equation: Existence and multiplicity
    Ambrosio, Vincenzo
    d'Avenia, Pietro
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) : 3336 - 3368
  • [10] Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method
    Ambrosio, Vincenzo
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2043 - 2062