Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris

被引:599
作者
Larimer, FW
Chain, P
Hauser, L
Lamerdin, J
Malfatti, S
Do, L
Land, ML
Pelletier, DA
Beatty, JT
Lang, AS
Tabita, FR
Gibson, JL
Hanson, TE
Bobst, C
Torres, JLTY
Peres, C
Harrison, FH
Gibson, J
Harwood, CS
机构
[1] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
[2] Joint Genome Inst, Walnut Creek, CA 94598 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada
[5] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
D O I
10.1038/nbt923
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 48 条
  • [1] CRITICA: Coding region identification tool invoking comparative analysis
    Badger, JH
    Olsen, GJ
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (04) : 512 - 524
  • [2] Acetate as a carbon source for hydrogen production by photosynthetic bacteria
    Barbosa, MJ
    Rocha, JMS
    Tramper, J
    Wijffels, RH
    [J]. JOURNAL OF BIOTECHNOLOGY, 2001, 85 (01) : 25 - 33
  • [3] Boivin C, 1997, CRIT REV PLANT SCI, V16, P1, DOI 10.1080/713608143
  • [4] Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions
    Cao, TB
    Saier, MH
    [J]. MICROBIOLOGY-SGM, 2001, 147 : 3201 - 3214
  • [5] Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea
    Chain, P
    Lamerdin, J
    Larimer, F
    Regala, W
    Lao, V
    Land, M
    Hauser, L
    Hooper, A
    Klotz, M
    Norton, J
    Sayavedra-Soto, L
    Arciero, D
    Hommes, N
    Whittaker, M
    Arp, D
    [J]. JOURNAL OF BACTERIOLOGY, 2003, 185 (09) : 2759 - 2773
  • [6] How photosynthetic bacteria harvest solar energy
    Cogdell, RJ
    Isaacs, NW
    Howard, TD
    McLuskey, K
    Fraser, NJ
    Prince, SM
    [J]. JOURNAL OF BACTERIOLOGY, 1999, 181 (13) : 3869 - 3879
  • [7] Improved microbial gene identification with GLIMMER
    Delcher, AL
    Harmon, D
    Kasif, S
    White, O
    Salzberg, SL
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (23) : 4636 - 4641
  • [8] Role of Rhodobacter sp strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation
    Do, YS
    Schmidt, TM
    Zahn, JA
    Boyd, ES
    de la Mora, A
    DiSpirito, AA
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) : 1710 - 1720
  • [9] Structure-function relationships of alternative nitrogenases
    Eady, RR
    [J]. CHEMICAL REVIEWS, 1996, 96 (07) : 3013 - 3030
  • [10] A cluster of bacterial genes for anaerobic benzene ring biodegradation
    Egland, PG
    Pelletier, DA
    Dispensa, M
    Gibson, J
    Harwood, CS
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) : 6484 - 6489