Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris

被引:610
作者
Larimer, FW
Chain, P
Hauser, L
Lamerdin, J
Malfatti, S
Do, L
Land, ML
Pelletier, DA
Beatty, JT
Lang, AS
Tabita, FR
Gibson, JL
Hanson, TE
Bobst, C
Torres, JLTY
Peres, C
Harrison, FH
Gibson, J
Harwood, CS
机构
[1] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
[2] Joint Genome Inst, Walnut Creek, CA 94598 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada
[5] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
D O I
10.1038/nbt923
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 48 条
[1]   CRITICA: Coding region identification tool invoking comparative analysis [J].
Badger, JH ;
Olsen, GJ .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (04) :512-524
[2]   Acetate as a carbon source for hydrogen production by photosynthetic bacteria [J].
Barbosa, MJ ;
Rocha, JMS ;
Tramper, J ;
Wijffels, RH .
JOURNAL OF BIOTECHNOLOGY, 2001, 85 (01) :25-33
[3]  
Boivin C, 1997, CRIT REV PLANT SCI, V16, P1, DOI 10.1080/713608143
[4]   Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions [J].
Cao, TB ;
Saier, MH .
MICROBIOLOGY-SGM, 2001, 147 :3201-3214
[5]   Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea [J].
Chain, P ;
Lamerdin, J ;
Larimer, F ;
Regala, W ;
Lao, V ;
Land, M ;
Hauser, L ;
Hooper, A ;
Klotz, M ;
Norton, J ;
Sayavedra-Soto, L ;
Arciero, D ;
Hommes, N ;
Whittaker, M ;
Arp, D .
JOURNAL OF BACTERIOLOGY, 2003, 185 (09) :2759-2773
[6]   How photosynthetic bacteria harvest solar energy [J].
Cogdell, RJ ;
Isaacs, NW ;
Howard, TD ;
McLuskey, K ;
Fraser, NJ ;
Prince, SM .
JOURNAL OF BACTERIOLOGY, 1999, 181 (13) :3869-3879
[7]   Improved microbial gene identification with GLIMMER [J].
Delcher, AL ;
Harmon, D ;
Kasif, S ;
White, O ;
Salzberg, SL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (23) :4636-4641
[8]   Role of Rhodobacter sp strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation [J].
Do, YS ;
Schmidt, TM ;
Zahn, JA ;
Boyd, ES ;
de la Mora, A ;
DiSpirito, AA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1710-1720
[9]   Structure-function relationships of alternative nitrogenases [J].
Eady, RR .
CHEMICAL REVIEWS, 1996, 96 (07) :3013-3030
[10]   A cluster of bacterial genes for anaerobic benzene ring biodegradation [J].
Egland, PG ;
Pelletier, DA ;
Dispensa, M ;
Gibson, J ;
Harwood, CS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6484-6489