A 9-gene biomarker panel identifies bacterial coinfections in culture-negative COVID-19 cases

被引:12
作者
Banerjee, Ushashi [1 ]
Rao, Pragati [2 ]
Reddy, Megha [3 ]
Hussain, Meeran [1 ]
Chunchanur, Sneha [4 ]
Ambica, R. [4 ]
Singh, Amit [5 ]
Chandra, Nagasuma [1 ,6 ]
机构
[1] Indian Inst Sci, Dept Biochem, Bangalore 560012, Karnataka, India
[2] MS Ramaiah Med Coll Hosp, Dept Resp Med, Bangalore, Karnataka, India
[3] MS Ramaiah Med Coll Hosp, Dept Gen Med, Bangalore, Karnataka, India
[4] Bangalore Med Coll & Res Inst BMCRI, Bangalore, Karnataka, India
[5] Indian Inst Sci, Ctr Infect Dis Res, Bangalore, Karnataka, India
[6] Indian Inst Sci, Ctr Biosyst Sci & Engn, Bangalore, Karnataka, India
关键词
PACKAGE;
D O I
10.1039/d2mo00100d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Confirmatory diagnosis of bacterial coinfections with COVID-19 is challenging due to the limited specificity of the widely used gold-standard culture sensitivity test despite clinical presentations. A misdiagnosis can either lead to increased health complications or overuse of antibiotics in COVID-19 patients. With a multi-step systems biology pipeline, we have identified a 9-gene biomarker panel from host blood that can identify bacterial coinfection in COVID-19 patients, even in culture-negative cases. We have also formulated a qPCR-based score that diagnoses bacterial coinfection with COVID-19 with the accuracy, specificity, and sensitivity of 0.93, 0.96, and 0.89, respectively. This gene signature and score can assist in the clinical decision-making process of necessary and timely prescription of antibiotics in suspected bacterial coinfection cases with COVID-19 and thereby help to reduce the associated morbidity and mortality.
引用
收藏
页码:814 / 820
页数:7
相关论文
共 19 条
[1]   Immune Subtyping in Latent Tuberculosis [J].
Banerjee, Ushashi ;
Baloni, Priyanka ;
Singh, Amit ;
Chandra, Nagasuma .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[2]   Evaluation of potential biomarkers for the discrimination of bacterial and viral infections [J].
Chalupa, P. ;
Beran, O. ;
Herwald, H. ;
Kasprikova, N. ;
Holub, M. .
INFECTION, 2011, 39 (05) :411-417
[3]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[4]   An interactive web-based dashboard to track COVID-19 in real time [J].
Dong, Ensheng ;
Du, Hongru ;
Gardner, Lauren .
LANCET INFECTIOUS DISEASES, 2020, 20 (05) :533-534
[5]   The good and the bad: using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings [J].
Escadafal, Camille ;
Incardona, Sandra ;
Fernandez-Carballo, B. Leticia ;
Dittrich, Sabine .
BMJ GLOBAL HEALTH, 2020, 5 (05)
[6]   Procalcitonin levels in COVID-19 patients [J].
Hu, Rui ;
Han, Chaofei ;
Pei, Shiyao ;
Yin, Mingzhu ;
Chen, Xiang .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2020, 56 (02)
[7]  
Huber W, 2015, NAT METHODS, V12, P115, DOI [10.1038/NMETH.3252, 10.1038/nmeth.3252]
[8]   Building Predictive Models in R Using the caret Package [J].
Kuhn, Max .
JOURNAL OF STATISTICAL SOFTWARE, 2008, 28 (05) :1-26
[9]   Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis [J].
Langford, Bradley J. ;
So, Miranda ;
Raybardhan, Sumit ;
Leung, Valerie ;
Westwood, Duncan ;
MacFadden, Derek R. ;
Soucy, Jean-Paul R. ;
Daneman, Nick .
CLINICAL MICROBIOLOGY AND INFECTION, 2020, 26 (12) :1622-1629
[10]   Community-acquired Coinfection in Coronavirus Disease 2019: A Retrospective Observational Experience [J].
Lehmann, Christopher J. ;
Pho, Mai T. ;
Pitrak, David ;
Ridgway, Jessica P. ;
Pettit, Natasha N. .
CLINICAL INFECTIOUS DISEASES, 2021, 72 (08) :1450-1452