The complex K* ring of the complex projective Stiefel manifold

被引:0
|
作者
Gondhali, Shilpa [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, KK Birla Goa Campus, Zuarinagar 403726, Goa, India
关键词
Complex projective Stiefel manifolds; Complex K* ring; Right generalized complex projective Stiefel manifold; Hodgkin spectral sequence; Generalized binomial coefficients;
D O I
10.1007/s10801-019-00881-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The topological K*ring is one of the important tools used for understanding the topology of a manifold. We settle a problem of computing the K* ring of complex projective Stiefel manifold using combinatorics. We calculate K* ring of the right generalized projective Stiefel manifold, denoted by PlWn,k , which gives us description of complex K* ring of complex projective Stiefel manifold PWn,k, which is a particular case of PlWn,k.
引用
收藏
页码:455 / 468
页数:14
相关论文
共 50 条
  • [2] Cohomology of complex projective Stiefel manifolds
    Astey, L
    Gitler, S
    Micha, E
    Pastor, G
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (05): : 897 - 914
  • [3] Parallelizability of complex projective Stiefel manifolds
    Astey, L
    Gitler, S
    Micha, E
    Pastor, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) : 1527 - 1530
  • [4] Almost complex and complex structures on real projective Stiefel manifolds
    Korbaš J.
    Sankaran P.
    Rendiconti del Circolo Matematico di Palermo, 1999, 48 (1) : 5 - 12
  • [5] On the parallelizability of generalized complex projective Stiefel manifolds
    Astey, L
    Micha, E
    Pastor, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 497 - 504
  • [6] Volume of Geodesic Balls in the Complex Stiefel Manifold
    Krishnamachari, Rajesh T.
    Varanasi, Mahesh K.
    2008 46TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, 2008, : 902 - 909
  • [7] Holomorphic Isometry from a Kähler Manifold into a Product of Complex Projective Manifolds
    Xiaojun Huang
    Yuan Yuan
    Geometric and Functional Analysis, 2014, 24 : 854 - 886
  • [8] PARTICLE FILTERING ON THE COMPLEX STIEFEL MANIFOLD WITH APPLICATION TO SUBSPACE TRACKING
    Bordin Jr, Claudio J.
    Bruno, Marcelo G. S.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5485 - 5489
  • [9] On the finiteness of meromorphic mappings from a complete Kähler manifold into complex projective spaces
    Pham, Duc Thoan
    Hoang, Thu Thuy
    Vu, Thi Thuy
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1847 - 1876
  • [10] BORDISM RING OF COMPLEX PROJECTIVE SPACE
    SCHOCHET, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (01) : 267 - 270