Exponential lower bounds on the lengths of some classes of branch-and-cut proofs

被引:23
作者
Dash, S [1 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
cutting planes; cutting-plane proofs; branch-and-cut proofs; proof complexity;
D O I
10.1287/moor.1050.0151
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine the complexity of branch-and-cut proofs in the context of 0-1 integer programs. We establish an exponential lower bound on the length of branch-and-cut proofs that use 0-1 branching and lift-and-project cuts (called simple disjunctive cuts by some authors), Gomory-Chvatal cuts, and cuts arising from the No matrix-cut operator of Lovasz and Schrijver. A consequence of the lower-bound result in this paper is that branch-and-cut methods of the type described above have exponential running time in the worst case.
引用
收藏
页码:678 / 700
页数:23
相关论文
共 52 条
[1]   THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS [J].
ALON, N ;
BOPPANA, RB .
COMBINATORICA, 1987, 7 (01) :1-22
[2]   A LIFT-AND-PROJECT CUTTING PLANE ALGORITHM FOR MIXED 0-1 PROGRAMS [J].
BALAS, E ;
CERIA, S ;
CORNUEJOLS, G .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :295-324
[3]   Gomory cuts revisited [J].
Balas, E ;
Ceria, S ;
Cornuejols, G ;
Natraj, N .
OPERATIONS RESEARCH LETTERS, 1996, 19 (01) :1-9
[4]  
Balas Egon., 1979, ANN OFDISCRETE MATH, V5, P3, DOI DOI 10.1016/S0167-5060(08)70342-X
[5]  
BEAME P, 1998, B EATCS, V65, P66
[6]  
Bixby RE, 2000, INT FED INFO PROC, V46, P19
[7]   Lower bounds for cutting planes proofs with small coefficients [J].
Bonet, M ;
Pitassi, T ;
Raz, R .
JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (03) :708-728
[8]  
BUSS S, 1995, ARCH MATH LOGIC, V35, P33
[9]   On the separation of split cuts and related inequalities [J].
Caprara, A ;
Letchford, AN .
MATHEMATICAL PROGRAMMING, 2003, 94 (2-3) :279-294
[10]  
Chvatal, 1984, 84326OR U BONN I OK