Exponential lower bounds on the lengths of some classes of branch-and-cut proofs

被引:22
作者
Dash, S [1 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
cutting planes; cutting-plane proofs; branch-and-cut proofs; proof complexity;
D O I
10.1287/moor.1050.0151
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine the complexity of branch-and-cut proofs in the context of 0-1 integer programs. We establish an exponential lower bound on the length of branch-and-cut proofs that use 0-1 branching and lift-and-project cuts (called simple disjunctive cuts by some authors), Gomory-Chvatal cuts, and cuts arising from the No matrix-cut operator of Lovasz and Schrijver. A consequence of the lower-bound result in this paper is that branch-and-cut methods of the type described above have exponential running time in the worst case.
引用
收藏
页码:678 / 700
页数:23
相关论文
共 52 条
  • [1] THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS
    ALON, N
    BOPPANA, RB
    [J]. COMBINATORICA, 1987, 7 (01) : 1 - 22
  • [2] A LIFT-AND-PROJECT CUTTING PLANE ALGORITHM FOR MIXED 0-1 PROGRAMS
    BALAS, E
    CERIA, S
    CORNUEJOLS, G
    [J]. MATHEMATICAL PROGRAMMING, 1993, 58 (03) : 295 - 324
  • [3] Gomory cuts revisited
    Balas, E
    Ceria, S
    Cornuejols, G
    Natraj, N
    [J]. OPERATIONS RESEARCH LETTERS, 1996, 19 (01) : 1 - 9
  • [4] Balas Egon., 1979, ANN OFDISCRETE MATH, V5, P3, DOI DOI 10.1016/S0167-5060(08)70342-X
  • [5] BEAME P, 1998, B EATCS, V65, P66
  • [6] Bixby RE, 2000, INT FED INFO PROC, V46, P19
  • [7] Lower bounds for cutting planes proofs with small coefficients
    Bonet, M
    Pitassi, T
    Raz, R
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (03) : 708 - 728
  • [8] BUSS S, 1995, ARCH MATH LOGIC, V35, P33
  • [9] On the separation of split cuts and related inequalities
    Caprara, A
    Letchford, AN
    [J]. MATHEMATICAL PROGRAMMING, 2003, 94 (2-3) : 279 - 294
  • [10] Chvatal, 1984, 84326OR U BONN I OK