The 2-D stochastic Keller-Segel particle model: existence and uniqueness

被引:0
作者
Cattiaux, Patrick [1 ]
Pedeches, Laure [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, CNRS UMR 5219, 118 Route Narbonne, F-31062 Toulouse 09, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2016年 / 13卷 / 01期
关键词
Keller-Segel model; diffusion processes; Bessel processes; APPROXIMATION; PROPAGATION; EQUATIONS; SYSTEM; CHAOS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a stochastic system of interacting particles which is expected to furnish, as the number of particles goes to infinity, a stochastic approach of the 2-D Keller-Segel model. In this note, we prove existence and some uniqueness for the stochastic model for the parabolic-elliptic Keller-Segel equation, for all regimes under the critical mass. Prior results for existence and weak uniqueness have been very recently obtained by Fournier and Jourdain (2015).
引用
收藏
页码:447 / 463
页数:17
相关论文
共 17 条
  • [1] [Anonymous], 1999, FUNDAMENTAL PRINCIPL
  • [2] Blanchet A., 2012, METHODES VARIATIONNE
  • [3] On symmetric and skew Bessel processes
    Blei, Stefan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (09) : 3262 - 3287
  • [4] Probabilistic approach for granular media equations in the non-uniformly convex case
    Cattiaux, P.
    Guillin, A.
    Malrieu, F.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) : 19 - 40
  • [5] CATTIAUX P, 1986, ANN I H POINCARE-PR, V22, P67
  • [6] Propagation of chaos for the 2D viscous vortex model
    Fournier, Nicolas
    Hauray, Maxime
    Mischler, Stephane
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) : 1423 - 1466
  • [7] Fournier Nicolas, 2015, ARXIV150701087
  • [8] Fukushima M., 1980, N HOLLAND MATH LIB, V23
  • [9] Propagation of chaos for a subcritical Keller-Segel model
    Godinho, David
    Quininao, Cristobal
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 965 - 992
  • [10] Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System
    Haskovec, Jan
    Schmeiser, Christian
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 940 - 960