The 2-D stochastic Keller-Segel particle model: existence and uniqueness

被引:0
作者
Cattiaux, Patrick [1 ]
Pedeches, Laure [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, CNRS UMR 5219, 118 Route Narbonne, F-31062 Toulouse 09, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2016年 / 13卷 / 01期
关键词
Keller-Segel model; diffusion processes; Bessel processes; APPROXIMATION; PROPAGATION; EQUATIONS; SYSTEM; CHAOS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a stochastic system of interacting particles which is expected to furnish, as the number of particles goes to infinity, a stochastic approach of the 2-D Keller-Segel model. In this note, we prove existence and some uniqueness for the stochastic model for the parabolic-elliptic Keller-Segel equation, for all regimes under the critical mass. Prior results for existence and weak uniqueness have been very recently obtained by Fournier and Jourdain (2015).
引用
收藏
页码:447 / 463
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 1999, FUNDAMENTAL PRINCIPL
[2]  
Blanchet A., 2012, METHODES VARIATIONNE
[3]   On symmetric and skew Bessel processes [J].
Blei, Stefan .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (09) :3262-3287
[4]   Probabilistic approach for granular media equations in the non-uniformly convex case [J].
Cattiaux, P. ;
Guillin, A. ;
Malrieu, F. .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :19-40
[5]  
CATTIAUX P, 1986, ANN I H POINCARE-PR, V22, P67
[6]   Propagation of chaos for the 2D viscous vortex model [J].
Fournier, Nicolas ;
Hauray, Maxime ;
Mischler, Stephane .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) :1423-1466
[7]  
Fournier Nicolas, 2015, ARXIV150701087
[8]  
Fukushima M., 1980, N HOLLAND MATH LIB, V23
[9]   Propagation of chaos for a subcritical Keller-Segel model [J].
Godinho, David ;
Quininao, Cristobal .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03) :965-992
[10]   Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System [J].
Haskovec, Jan ;
Schmeiser, Christian .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) :940-960