High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser melting

被引:53
|
作者
Lin, Danyang [1 ,2 ,3 ]
Xi, Xin [2 ,3 ]
Li, Xiaojie [4 ]
Hu, Jixu [2 ,3 ]
Xu, Lianyong [1 ]
Han, Yongdian [1 ]
Zhang, Yankun [1 ]
Zhao, Lei [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300050, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
[3] Harbin Inst Technol Weihai, Sch Mat Sci & Technol, Weihai 264209, Peoples R China
[4] Taizhou Univ, Dept Phys, Taizhou 318000, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 832卷
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Powder bed fusion; Dislocation networks; Cracks; High-temperature properties; STRAIN-GRADIENT PLASTICITY; MICROSTRUCTURAL EVOLUTION; DEFORMATION MECHANISMS; MARTENSITIC STEEL; SERRATED FLOW; PRECIPITATION; STRENGTH; NETWORK; MODEL; ZR;
D O I
10.1016/j.msea.2021.142354
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high-temperature application of high-entropy alloys (HEAs) fabricated via selective laser melting (SLM) relies on an in-depth understanding of the mechanical properties and deformation mechanisms involved. This study conducted tensile testing of FeCoCrNi HEA, at various temperatures and strain rates, where the microstructure was systematically characterized before and after deformation. The FeCoCrNi HEAs fabricated via SLM exhibited a greatly enhanced tensile strength at room temperature compared to those produced by traditional processing, but the strength at high temperature was significantly compromised. Experimental data were used to calculate the parameters of a constitutive model based on three classical mathematical models to predict the flow behavior at elevated temperatures. The softening mechanism was attributed to the evolution of the dislocation network, and a structure-mechanism-property relationship at elevated temperatures was established. Further, cracks initiated at the grain boundaries at elevated temperatures owing to nano-clustering. These results are expected to contribute to the development and improvement of SLM-HEAs for use at high temperatures.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting
    Lin, Danyang
    Xu, Lianyong
    Jing, Hongyang
    Han, Yongdian
    Zhao, Lei
    Minami, Fumiyoshi
    ADDITIVE MANUFACTURING, 2020, 32
  • [2] Structure and mechanical properties of a FeCoCrNi high-entropy alloy fabricated via selective laser melting
    Lin, Danyang
    Xu, Lianyong
    Han, Yongdian
    Zhang, Yankun
    Jing, Hongyang
    Zhao, Lei
    Minami, Fumiyoshi
    INTERMETALLICS, 2020, 127 (127)
  • [3] Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting
    Zhou, Rui
    Liu, Yong
    Zhou, Chengshang
    Li, Siqin
    Wu, Wenqian
    Song, Min
    Liu, Bin
    Liang, Xiaopeng
    Liaw, P. K.
    INTERMETALLICS, 2018, 94 : 165 - 171
  • [4] The manufacturing process optimization and the mechanical properties of FeCoCrNi high entropy alloys fabricated by selective laser melting
    Peng, Yingbo
    Jia, Caijun
    Song, Lingfeng
    Bian, Yuchao
    Tang, Hongwei
    Cai, Guanglu
    Zhong, Gaoyan
    INTERMETALLICS, 2022, 145
  • [5] Effects of Laser Powers on Microstructures and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloys Fabricated by Laser Melting Deposition
    Zhang, Xuesong
    Tian, Yinbao
    Manladan, Sunusi Marwana
    Cui, Yan
    Geng, Keping
    Cai, Yangchuan
    Han, Jian
    MATERIALS, 2022, 15 (08)
  • [6] A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting
    Lin, Danyang
    Xu, Lianyong
    Li, Xiaojie
    Jing, Hongyang
    Qin, Gang
    Pang, Hongning
    Minami, Fumiyoshi
    ADDITIVE MANUFACTURING, 2020, 35
  • [7] Effect of Grain Orientation on Microstructure and Mechanical Properties of FeCoCrNi High-Entropy Alloy Produced via Laser Melting Deposition
    Ge, Fuyu
    Liu, Shuai
    Zhang, Xin
    Shan, Mengdie
    Peng, Cheng
    Jia, Fanghui
    Han, Jian
    Cai, Yangchuan
    MATERIALS, 2023, 16 (17)
  • [8] Oxidation Behavior of CoCrFeMnNi High-Entropy Alloy Fabricated by Selective Laser Melting
    Jia, Xiquan
    Xu, Zhenlin
    He, Yizhu
    Zhou, Shengxuan
    Du, Xiaojie
    Zhang, Hui
    Mao, Aiqin
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (10) : 2895 - 2908
  • [9] Anisotropic Response of CoCrFeMnNi High-Entropy Alloy Fabricated by Selective Laser Melting
    Wang, Bowen
    Sun, Miao
    Li, Bobo
    Zhang, Lijuan
    Lu, Bingheng
    MATERIALS, 2020, 13 (24) : 1 - 17
  • [10] Effect of Cr content on microstructure, mechanical, and corrosion properties of CoCr x FeMnNi high-entropy alloys fabricated by selective laser melting
    Sun, Miao
    Yang, Zhaoning
    Song, Suocheng
    Zhang, Jianxun
    Lu, Bingheng
    MATERIALS CHARACTERIZATION, 2024, 212