A two-grids/projection algorithm for obstacle problems

被引:6
作者
Caboussat, A [1 ]
Glowinski, R [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
two-grids method; obstacle problem; splitting scheme;
D O I
10.1016/j.camwa.2004.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to emphasize the possible relation between discontinuous and continuous approximations on different meshes, a two-grids method for the resolution of parabolic variational inequality problems is presented. The numerical methodology combines a time splitting algorithm to decouple a diffusion phenomenon from an obstacle problem. The diffusion problem is solved by using finite-differences, while piecewise linear finite-element techniques are used together with a Newton method for the obstacle problem. Projections are used to interpolate the solution from one grid to the other. Numerical experiments show that the resulting method has good accuracy properties. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1985, MULTI GRID METHODS A
[2]  
Dacorogna B, 2004, SCIENTIF COMPUT, P263
[3]   A general-purpose finite-volume advection scheme for continuous and discontinuous fields on unstructured grids [J].
Dendy, ED ;
Padial-Collins, NT ;
VanderHeyden, WB .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (02) :559-583
[4]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[5]   Approximation of multi-scale elliptic problems using patches of finite elements [J].
Glowinski, R ;
He, JW ;
Rappaz, J ;
Wagner, J .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (10) :679-684
[6]   A penalty/Newton/conjugate gradient method for the solution of obstacle problems [J].
Glowinski, R ;
Kuznetsov, YA ;
Pan, TW .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (05) :435-440
[7]  
KOTHE DB, 1998, PERSPECTIVE EULERIAN
[8]  
KUPRAT A, 2003, LAUR039109
[9]  
MARCHUK GI, 1990, HDB NUMERICAL ANAL, V1, P197, DOI DOI 10.1016/S1570-8659(05)80035-3
[10]   Numerical simulation of free surface flows [J].
Maronnier, V ;
Picasso, M ;
Rappaz, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :439-455