Sirtuin7 is involved in protecting neurons against oxygen-glucose deprivation and reoxygenation-induced injury through regulation of the p53 signaling pathway

被引:13
|
作者
Lv, Jianrui [1 ]
Tian, Junbin [1 ]
Zheng, Guoxi [2 ]
Zhao, Jing [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Anesthesiol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Otorhinolaryngol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
关键词
neuron; oxygen-glucose deprivation and reoxygenation; p53; SIRT7; RNA-POLYMERASE-I; SIRT7; STRESS; APOPTOSIS; DISEASE; STROKE; CARDIOMYOPATHY; ACTIVATION; MECHANISMS; SURVIVAL;
D O I
10.1002/jbt.21955
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuin7 (SIRT7) is known to regulate apoptosis and stress responses. So far, very little is known about the role of SIRT7 in cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the potential role of SIRT7 in regulating oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in neurons. We found a significant increase of SIRT7 expression in neurons in response to OGD/R treatment. Knockdown of SIRT7 aggravated OGD/R-induced injury. Knockdown of SIRT7 augmented the levels of total and acetylated p53 protein. Moreover, knockdown of SIRT7 markedly increased the transcriptional activity of p53 toward apoptosis and activated the p53-mediated proapoptotic signaling pathway. By contrast, overexpression of SIRT7 showed the opposite effects. Taken together, the results of our study suggest that SIRT7 is involved in protecting neurons against OGD/R-induced injury, possibly through regulation of the p53-mediated proapoptotic signaling pathway, indicating a potential therapeutic target for cerebral ischemia/reperfusion injury.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B
    Meng, Xianfang
    Chu, Guangpin
    Yang, Zhihua
    Qi, Ping
    Hu, Yue
    Chen, Xiaohe
    Peng, Wenpeng
    Ye, Chen
    He, Fang-Fang
    Zhang, Chun
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 40 (3-4) : 477 - 485
  • [42] Protective effects of the knockdown of lncRNA AK139328 against oxygen glucose deprivation/reoxygenation-induced injury in PC12 cells
    Liu, Liyan
    Zheng, Bin
    Wang, Zhaoxia
    MOLECULAR MEDICINE REPORTS, 2021, 24 (03)
  • [43] Autophagy Inhibition by ATG3 Knockdown Remits Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells
    Peng, Zhaolong
    Ji, Daofei
    Qiao, Lukuan
    Chen, Yuedong
    Huang, Hongjuan
    NEUROCHEMICAL RESEARCH, 2021, 46 (12) : 3200 - 3212
  • [44] TAK-242 protects against oxygen-glucose deprivation and reoxygenation-induced injury in brain microvascular endothelial cells and alters the expression pattern of lncRNAs
    Kong, Li-Yun
    Zhu, Shen-Yu
    Si, Mao-Yan
    Xu, Xue-Hua
    Yu, Jun-Jian
    Zhong, Wei-Xiang
    Sang, Cheng-Peng
    Rao, Ding-Yu
    Xie, Fa-Chun
    Liu, Zi-You
    Tang, Zhi-Xian
    JOURNAL OF THORACIC DISEASE, 2023, 15 (05) : 2571 - +
  • [45] MicroRNA-152-3p protects neurons from oxygen-glucose-deprivation/reoxygenation-induced injury through upregulation of Nrf2/ARE antioxidant signaling by targeting PSD-93
    Zhang, Aixiang
    Qian, Yuanjie
    Qian, Jian
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 517 (01) : 69 - 76
  • [46] miR-363-3p attenuates the oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro by targeting PDCD6IP
    Wang, Yihan
    Jin, Jiahui
    Xia, Zongxin
    Chen, Huisheng
    MOLECULAR MEDICINE REPORTS, 2022, 26 (05)
  • [47] N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine attenuates oxygen-glucose deprivation and reoxygenation-induced cerebral ischemia-reperfusion injury via regulation of microRNAs
    Yang, Tiansong
    Wang, Dongyan
    Qu, Yuanyuan
    Wang, Yulin
    Feng, Yuenan
    Yang, Yan
    Luo, Qiang
    Sun, Xiaowei
    Yu, Guoqiang
    He, Jia
    Sun, Zhongren
    Zhu, Yulan
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2020, 19 (02) : 303 - 311
  • [48] Microglial and Neuronal Cell Pyroptosis Induced by Oxygen-Glucose Deprivation/Reoxygenation Aggravates Cell Injury via Activation of the Caspase-1/GSDMD Signaling Pathway
    Dong, Zhaofei
    Peng, Qingxia
    Pan, Kuang
    Lin, Weijye
    Wang, Yidong
    NEUROCHEMICAL RESEARCH, 2023, 48 (09) : 2660 - 2673
  • [49] Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways
    Guan, Junhong
    Du, Shaonan
    Lv, Tao
    Qu, Shengtao
    Fu, Qiang
    Yuan, Ye
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2016, 43 (01) : 125 - 134
  • [50] MicroRNA miR-505-5p Promotes Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury via Negative Regulation of CREG1 in Cultured Neuron-Like Cells
    Gao, Y.
    Nan, G.
    Chi, L.
    NEUROPHYSIOLOGY, 2019, 51 (06) : 400 - 408