Sirtuin7 is involved in protecting neurons against oxygen-glucose deprivation and reoxygenation-induced injury through regulation of the p53 signaling pathway

被引:13
|
作者
Lv, Jianrui [1 ]
Tian, Junbin [1 ]
Zheng, Guoxi [2 ]
Zhao, Jing [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Anesthesiol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Otorhinolaryngol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
关键词
neuron; oxygen-glucose deprivation and reoxygenation; p53; SIRT7; RNA-POLYMERASE-I; SIRT7; STRESS; APOPTOSIS; DISEASE; STROKE; CARDIOMYOPATHY; ACTIVATION; MECHANISMS; SURVIVAL;
D O I
10.1002/jbt.21955
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuin7 (SIRT7) is known to regulate apoptosis and stress responses. So far, very little is known about the role of SIRT7 in cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the potential role of SIRT7 in regulating oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in neurons. We found a significant increase of SIRT7 expression in neurons in response to OGD/R treatment. Knockdown of SIRT7 aggravated OGD/R-induced injury. Knockdown of SIRT7 augmented the levels of total and acetylated p53 protein. Moreover, knockdown of SIRT7 markedly increased the transcriptional activity of p53 toward apoptosis and activated the p53-mediated proapoptotic signaling pathway. By contrast, overexpression of SIRT7 showed the opposite effects. Taken together, the results of our study suggest that SIRT7 is involved in protecting neurons against OGD/R-induced injury, possibly through regulation of the p53-mediated proapoptotic signaling pathway, indicating a potential therapeutic target for cerebral ischemia/reperfusion injury.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Harpagide from Scrophularia protects rat cortical neurons from oxygen-glucose deprivation and reoxygenation-induced injury by decreasing endoplasmic reticulum stress
    Wang, Ke
    Lou, Yeliang
    Xu, Huang
    Zhong, Xiaoming
    Huang, Zhen
    JOURNAL OF ETHNOPHARMACOLOGY, 2020, 253
  • [32] LncRNA XIST Exacerbates Oxygen-Glucose Deprivation/Reoxygenation-Induced Cerebral Injury Through the miR-25-3p/TRAF3 Axis
    Li, You
    Zhang, Ji-Kun
    Yu, Zheng-Tao
    Jiang, Jun-Wen
    Tang, Hong
    Tu, Guo-Long
    Xia, Ying
    MOLECULAR NEUROBIOLOGY, 2023, 60 (10) : 6109 - 6120
  • [33] Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway
    Cao, Wei
    Feng, She-Jun
    Kan, Min-Chen
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2021, 71 (01) : 101 - 111
  • [34] Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway
    Jiang, Li-hua
    Yuan, Xiao-lin
    Yang, Nian-yun
    Ren, Li
    Zhao, Feng-ming
    Luo, Ban-xin
    Bian, Yao-yao
    Xu, Jian-ya
    Lu, Da-xiang
    Zheng, Yuan-yuan
    Zhang, Chuan-juan
    Diao, Yuan-ming
    Xia, Bao-mei
    Chen, Gang
    JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2015, 152 : 45 - 52
  • [35] Troxerutin and Cerebroprotein Hydrolysate Injection Protects Neurovascular Units from Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury In Vitro
    Zhao, Hongyi
    Liu, Yu
    Zeng, Jing
    Li, Dandan
    Zhang, Weiwei
    Huang, Yonghua
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2018, 2018
  • [36] Role of GSK-3β inhibitor TWS119 in protecting neurons against oxygen-glucose deprivation injury
    Yu, Xiaowen
    Wang, Xiaoqing
    Zeng, Shuxiong
    Tuo, Xiping
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (10): : 14519 - 14525
  • [37] 7,8-Dihydroxyflavone protects neurons against oxygen-glucose deprivation induced apoptosis and activates the TrkB/Akt pathway
    Zhou, Qinxiang
    Tang, Hao
    Bai, Dingqun
    Kong, Yuhan
    PEERJ, 2022, 10
  • [39] Medicarpin Protects Cerebral Microvascular Endothelial Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via the PI3K/Akt/FoxO Pathway: A Study of Network Pharmacology Analysis and Experimental Validation
    Wang, Yu
    Yang, Ronggang
    Yan, Feng
    Jin, Yeqiang
    Liu, Xu
    Wang, Tiancai
    NEUROCHEMICAL RESEARCH, 2022, 47 (02) : 347 - 357
  • [40] Polygalasaponin F inhibits neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation through the PI3K/Akt pathway
    Xie, Wei
    Wulin, Hade
    Shao, Guo
    Wei, Liqin
    Qi, Ruifang
    Ma, Baohui
    Chen, Naihong
    Shi, Ruili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 (03) : 196 - 204