Sirtuin7 is involved in protecting neurons against oxygen-glucose deprivation and reoxygenation-induced injury through regulation of the p53 signaling pathway

被引:13
|
作者
Lv, Jianrui [1 ]
Tian, Junbin [1 ]
Zheng, Guoxi [2 ]
Zhao, Jing [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Anesthesiol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Otorhinolaryngol, Affiliated Hosp 2, Xian 710004, Shaanxi, Peoples R China
关键词
neuron; oxygen-glucose deprivation and reoxygenation; p53; SIRT7; RNA-POLYMERASE-I; SIRT7; STRESS; APOPTOSIS; DISEASE; STROKE; CARDIOMYOPATHY; ACTIVATION; MECHANISMS; SURVIVAL;
D O I
10.1002/jbt.21955
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuin7 (SIRT7) is known to regulate apoptosis and stress responses. So far, very little is known about the role of SIRT7 in cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the potential role of SIRT7 in regulating oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in neurons. We found a significant increase of SIRT7 expression in neurons in response to OGD/R treatment. Knockdown of SIRT7 aggravated OGD/R-induced injury. Knockdown of SIRT7 augmented the levels of total and acetylated p53 protein. Moreover, knockdown of SIRT7 markedly increased the transcriptional activity of p53 toward apoptosis and activated the p53-mediated proapoptotic signaling pathway. By contrast, overexpression of SIRT7 showed the opposite effects. Taken together, the results of our study suggest that SIRT7 is involved in protecting neurons against OGD/R-induced injury, possibly through regulation of the p53-mediated proapoptotic signaling pathway, indicating a potential therapeutic target for cerebral ischemia/reperfusion injury.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Effects of thymosin β4 on oxygen-glucose deprivation and reoxygenation-induced injury
    Ji, Hua
    Xu, Linhao
    Wang, Zheng
    Fan, Xinli
    Wu, Lihui
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 41 (03) : 1749 - 1755
  • [2] Protective effect of icarisideⅡ on oxygen-glucose deprivation and reoxygenation-induced injury in cerebral cortical neurons
    CHEN Na-na
    XU Fan
    FENG Lin-ying
    GAO Jian-mei
    GONG Qi-hai
    中国药理学与毒理学杂志, 2018, 32 (09) : 681 - 682
  • [3] MicroRNA-135a alleviates oxygen-glucose deprivation and reoxygenation-induced injury in neurons through regulation of GSK-3β/Nrf2 signaling
    Liu, Xiaobin
    Li, Min
    Hou, Mingshan
    Huang, Weidong
    Song, Jinning
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2018, 32 (07)
  • [4] Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro
    Li, Chang-Xiang
    Wang, Xue-Qian
    Cheng, Fa-Feng
    Yan, Xin
    Luo, Juan
    Wang, Qing-Guo
    NEURAL REGENERATION RESEARCH, 2019, 14 (11) : 1941 - 1949
  • [5] Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro
    Chang-Xiang Li
    Xue-Qian Wang
    Fa-Feng Cheng
    Xin Yan
    Juan Luo
    Qing-Guo Wang
    Neural Regeneration Research, 2019, 14 (11) : 1941 - 1949
  • [6] Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury
    Zhang, Yi
    Zhang, Jingjing
    Wu, Chuntao
    Guo, Sheng
    Su, Jing
    Zhao, Wendong
    Xing, Hongxia
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3757 - 3764
  • [7] DIXDC1 prevents oxygen-glucose deprivation/reoxygenation-induced injury in hippocampal neurons in vitro by promoting Wnt/β-catenin signaling
    Li, T.
    Wan, Y-C
    Sun, L-J
    Tao, S-J
    Chen, P.
    Liu, C-H
    Wang, K.
    Zhou, C-Y
    Zhao, G-Q
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (17) : 5678 - 5687
  • [8] MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway
    Duan, Qiang
    Sun, Wei
    Yuan, Hua
    Mu, Xiang
    ARCHIVES OF MEDICAL SCIENCE, 2018, 14 (04) : 735 - 744
  • [9] Che-1 inhibits oxygen-glucose deprivation/reoxygenation-induced neuronal apoptosis associated with inhibition of the p53-mediated proapoptotic signaling pathway
    Guo, Shenglong
    Chen, Ruili
    Chen, Xiaoli
    Xie, Zhen
    Huo, Fangfang
    Wu, Zhongliang
    NEUROREPORT, 2018, 29 (14) : 1193 - 1200
  • [10] TTB Protects Astrocytes Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Activation of Nrf2/HO-1 Signaling Pathway
    Liu, Liang
    Zhao, Zhichen
    Yin, Qimeng
    Zhang, Xiaolu
    FRONTIERS IN PHARMACOLOGY, 2019, 10