ON HILBERT'S INTEGRAL INEQUALITY AND ITS APPLICATIONS

被引:0
作者
Peng Xiuying [1 ]
Gao Mingzhe [2 ]
机构
[1] Tech Sch Xiangxi Autonomous Prefecture, Jishou 416000, Hunan, Peoples R China
[2] Normal Coll Jishou Univ, Dept Math & Comp Sci, Jishou 416000, Hunan, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2011年 / 14卷 / 02期
关键词
Weight function; Hilbert's integral inequality; Schwarz's inequality; Widder's inequality; Hardy-Littlewood's inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that a new improvement on Hilbert's integral inequality can be established by introducing a weight function of the form (1/1+root x - 1/1+x) (with x >= 0). As applications, some refinements on Widder's inequality and Hardy-Littlewood's inequality are given.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 10 条
[1]  
Gao MZ, 1999, J MATH ANAL APPL, V229, P682
[2]  
Gao MZ, 1998, P AM MATH SOC, V126, P751
[3]  
Gao MZ, 1997, J MATH ANAL APPL, V212, P316
[4]  
Gradshteyn S., 2014, Table of Integrals, Series, and Products, V8th
[5]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[6]  
HSU LC, 1990, J MATH RES EXP, V10, P500
[7]  
HU K, 1979, J JIANGXI NORMAL COL, V1, P1
[8]  
Mitrinovic J. E., 1991, Inequalities Involving Functions and Their Integrals and Derivatives
[9]  
WIDDER O. V., 1924, J LOND MATH SOC, V4, P194
[10]  
Zwillinger D., 1988, CRC STANDARD MATH TA