Subexponential rate versus distance with time-multiplexed quantum repeaters

被引:11
作者
Dhara, Prajit [1 ]
Patil, Ashlesha [1 ]
Krovi, Hari [2 ]
Guha, Saikat [1 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Raytheon BBN Technol, 10 Moulton St, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Error correction;
D O I
10.1103/PhysRevA.104.052612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum communications capacity using direct transmission over length-L optical fiber scales as R ti e-alpha L, where alpha is the fiber's loss coefficient. The rate achieved using a linear chain of quantum repeaters equipped with quantum memories, probabilistic Bell state measurements (BSMs), and switches used for spatial multiplexing, but no quantum error correction, was shown to surpass the direct-transmission capacity. However, this rate still decays exponentially with the end-to-end distance, viz., R ti e-s alpha L, with s < 1. We show that the introduction of temporal multiplexing-i.e., the ability to perform BSMs among qubits at a repeater node that were successfully entangled with qubits at distinct neighboring nodes at different time steps-leads to a subexponential rate-vs-distance scaling, i.e., R ti e-t root alpha L, which is not attainable with just spatial or spectral multiplexing. We evaluate analytical upper and lower bounds to this rate and obtain the exact rate by numerically optimizing the time-multiplexing block length and the number of repeater nodes. We further demonstrate that incorporating losses in the optical switches used to implement time multiplexing degrades the rate-vs-distance performance, eventually falling back to exponential scaling for very lossy switches. We also examine models for quantum memory decoherence and describe optimal regimes of operation to preserve the desired boost from temporal multiplexing. Quantum memory decoherence is seen to be more detrimental to the repeater's performance over switching losses.
引用
收藏
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1992, Curves and Singularities: A Geometrical Introduction to Singularity Theory
[2]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[3]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[4]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+
[5]   Secret key rates for an encoded quantum repeater [J].
Bratzik, Sylvia ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (03)
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   Multiplexed memory-insensitive quantum repeaters [J].
Collins, O. A. ;
Jenkins, S. D. ;
Kuzmich, A. ;
Kennedy, T. A. B. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[9]  
Dhara P., ARXIV210506707
[10]   Ultrabright source of entangled photon pairs [J].
Dousse, Adrien ;
Suffczynski, Jan ;
Beveratos, Alexios ;
Krebs, Olivier ;
Lemaitre, Aristide ;
Sagnes, Isabelle ;
Bloch, Jacqueline ;
Voisin, Paul ;
Senellart, Pascale .
NATURE, 2010, 466 (7303) :217-220