Robust a posteriori error estimation for mixed finite element approximation of linear poroelasticity

被引:6
|
作者
Khan, Arbaz [1 ]
Silvester, David J. [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Biot's consolidation model; mixed approximation; locking-free; a posteriori analysis; error estimation; adaptivity; CONSOLIDATION; ACCURACY; BEHAVIOR;
D O I
10.1093/imanum/draa058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a posteriori error estimators for locking-free mixed finite element approximation of Biot's consolidation model. Three estimators are described. The simplest of these is a conventional residual-based estimator. We establish bounds relating the estimated and true errors, and show that these are independent of the physical parameters. The other two estimators require the solution of local problems. These local problem estimators are also shown to be reliable, efficient and robust. Numerical results are presented that validate the theoretical estimates, and illustrate the effectiveness of the estimators in guiding adaptive solution algorithms. The IFISS and T-IFISS software packages used for the computational experiments are available online.
引用
收藏
页码:2000 / 2025
页数:26
相关论文
共 50 条
  • [1] Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity
    Khan, Arbaz
    Powell, Catherine E.
    Silvester, David J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (01) : 18 - 37
  • [2] An Introductory Review on A Posteriori Error Estimation in Finite Element Computations
    Chamoin, Ludovic
    Legoll, Frederic
    SIAM REVIEW, 2023, 65 (04) : 963 - 1028
  • [3] A posteriori error estimation in constitutive law for acoustic finite element analysis
    Bouillard, P
    Warzee, G
    ADVANCES IN FINITE ELEMENT TECHNOLOGY, 1996, : 55 - 60
  • [4] ROBUST A POSTERIORI ERROR ESTIMATION FOR PARAMETER-DEPENDENT LINEAR ELASTICITY EQUATIONS
    Khan, Arbaz
    Bespalov, Alex
    Powell, Catherine E.
    Silvester, David J.
    MATHEMATICS OF COMPUTATION, 2021, 90 (328) : 613 - 636
  • [5] A posteriori error estimation and adaptivity for multiple-network poroelasticity
    Eliseussen, Emilie
    Rognes, Marie Elisabeth
    Thompson, Travis B.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 1921 - 1952
  • [6] A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems
    Shaw, S
    Whiteman, JR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) : 5551 - 5572
  • [7] PARAMETER-ROBUST STOCHASTIC GALERKIN MIXED APPROXIMATION FOR LINEAR POROELASTICITY WITH UNCERTAIN INPUTS
    Khan, Arbaz
    Powell, Catherine E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04) : B855 - B883
  • [8] Quasilinear Poroelasticity: Analysis and Hybrid Finite Element Approximation
    Cao, Yanzhao
    Chen, Song
    Meir, A. J.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1174 - 1189
  • [9] Aspects of Finite Element and Finite Volume Equivalence and a Posteriori Error Estimation in Polymer Melt Flow
    Vaz, Miguel, Jr.
    Zdanski, Paulo Sergio B.
    Gaertner, Eduardo Luis
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2008, 30 (03) : 197 - 204
  • [10] A comparison of two nonconforming finite element methods for linear three-field poroelasticity
    Guo, Jun
    Shi, Yanchao
    Luo, Weihua
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)