Bifurcations of Periodic Solutions and Chaos in Josephson System with Parametric Excitation

被引:2
|
作者
Yuan, Shao-liang [1 ]
Jing, Zhu-jun [1 ,2 ]
机构
[1] Yichun Univ, Coll Math & Comp Sci, Yichun 330013, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Ctr Dynam Syst, Beijing 100190, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2015年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Josephson system; bifurcations; chaos; second-order averaging method; Melnikov method; JUNCTION CIRCUIT; DYNAMICS; PENDULUM; REGIONS; ORBITS;
D O I
10.1007/s10255-014-0447-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic, (2, 3, n-order) subharmonics and (2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under periodic perturbation. Using numerical simulation, we check our theoretical analysis and further study the effect of the parameters on dynamics. We find the complex dynamics, including the jumping behaviors, symmetry-breaking, chaos converting to periodic orbits, interior crisis, non-attracting chaotic set, interlocking (reverse) period-doubling bifurcations from periodic orbits, the processes from interlocking period-doubling bifurcations of periodic orbits to chaos after strange non-chaotic motions when the parameter beta increases, etc.
引用
收藏
页码:335 / 368
页数:34
相关论文
共 50 条
  • [41] Bifurcations of resonant solutions and chaos in physical pendulum equation with suspension axis vibrations
    Xiang-ling Fu
    Jin Deng
    Jian-ping Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 677 - 704
  • [42] Bifurcations and chaos in a forced cantilever system with impacts
    Wang Lin
    Ni Qiao
    Huang Yuying
    JOURNAL OF SOUND AND VIBRATION, 2006, 296 (4-5) : 1068 - 1078
  • [43] Homoclinic bifurcations and chaotic dynamics for a piecewise linear system under a periodic excitation and a viscous damping
    Li, S. B.
    Shen, C.
    Zhang, W.
    Hao, Y. X.
    NONLINEAR DYNAMICS, 2015, 79 (04) : 2395 - 2406
  • [44] Bifurcations and chaos in a refuse combustion control system
    Watanabe, N
    KAGAKU KOGAKU RONBUNSHU, 1998, 24 (03) : 471 - 475
  • [45] Local Bifurcations and Chaos in the Fractional Rossler System
    Cermak, Jan
    Nechvatal, Ludek
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (08):
  • [46] Periodic Points, Stability, Bifurcations, and Transition to Chaos in Generalized Fractional Maps
    Edelman, Mark
    IFAC PAPERSONLINE, 2024, 58 (12): : 131 - 142
  • [47] Bifurcations and chaos of bimetallic circular plates subjected to periodic heat load
    Wang, Yonggang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (04): : 256 - 266
  • [48] Combination resonance bifurcations and chaos of some nonlinear relative rotation system
    Li Hai-Bin
    Wang Bo-Hua
    Zhang Zhi-Qiang
    Liu Shuang
    Li Yan-Shu
    ACTA PHYSICA SINICA, 2012, 61 (09)
  • [49] Solutions, bifurcations and chaos of the nonlinear Schrodinger equation with weak damping
    Peng, JH
    Tang, JS
    Yu, DJ
    Yan, JR
    Hai, WH
    CHINESE PHYSICS, 2002, 11 (03): : 213 - 217
  • [50] BIFURCATIONS OF PERIODIC SOLUTIONS IN FORCED ORDINARY DIFFERENTIAL INCLUSIONS
    Feckan, Michal
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2009, 1 (04): : 459 - 472