A Quantum Analog of Generalized Cluster Algebras

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ,4 ]
Xu, Fan [5 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 W Main St, Whitewater, WI 53190 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Generalized cluster algebra; Generalized quantum cluster algebra; Laurent phenomenon; Standard monomial; DILOGARITHM;
D O I
10.1007/s10468-017-9743-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a quantum analog of a class of generalized cluster algebras which can be viewed as a generalization of quantum cluster algebras defined in Berenstein and Zelevinsky (Adv. Math. 195(2), 405-455 2005). In the case of rank two, we extend some structural results from the classical theory of generalized cluster algebras obtained in Chekhov and Shapiro (Int. Math. Res. Notices 10, 2746-2772 2014) and Rupel (2013) to the quantum case.
引用
收藏
页码:1203 / 1217
页数:15
相关论文
共 21 条
  • [1] A Quantum Analog of Generalized Cluster Algebras
    Liqian Bai
    Xueqing Chen
    Ming Ding
    Fan Xu
    Algebras and Representation Theory, 2018, 21 : 1203 - 1217
  • [2] Generalized quantum cluster algebras: The Laurent phenomenon and upper bounds
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    JOURNAL OF ALGEBRA, 2023, 619 : 298 - 322
  • [3] On F-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
    Fu, Changjian
    Peng, Liangang
    Ye, Huihui
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [4] On the Generalized Cluster Algebras of Geometric Type
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [5] Some properties of generalized cluster algebras of geometric type
    Huang, Junyuan
    Chen, Xueqing
    Xu, Fan
    Ding, Ming
    JOURNAL OF ALGEBRA, 2024, 660 : 270 - 290
  • [6] Scattering diagrams for generalized cluster algebras
    Mou, Lang
    ALGEBRA & NUMBER THEORY, 2024, 18 (12) : 2179 - 2246
  • [7] Tetrahedron equation and quantum cluster algebras
    Inoue, Rei
    Kuniba, Atsuo
    Terashima, Yuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (08)
  • [8] On some combinatorial properties of generalized cluster algebras
    Cao, Peigen
    Li, Fang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [9] Rogers dilogarithms of higher degree and generalized cluster algebras
    Nakanishi, Tomoki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (04) : 1269 - 1304
  • [10] A generalized quantum cluster algebra of Kronecker type
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 670 - 685