Cardiovascular risk prediction: Can Systematic Coronary Risk Evaluation (SCORE) be improved by adding simple risk markers? Results from the Copenhagen City Heart Study

被引:37
|
作者
Graversen, Peter [1 ]
Abildstrom, Steen Z. [1 ]
Jespersen, Lasse [1 ]
Borglykke, Anders [2 ]
Prescott, Eva [1 ]
机构
[1] Univ Copenhagen, Bispebjerg Hosp, DK-1168 Copenhagen, Denmark
[2] Univ Copenhagen, Glostrup Hosp, DK-1168 Copenhagen, Denmark
关键词
Cardiovascular disease; discrimination; risk stratification; risk markers; C-REACTIVE PROTEIN; DISEASE PREDICTION; CLINICALLY USEFUL; EVENTS; POPULATION; BIOMARKERS; MODELS; RECLASSIFICATION; MORTALITY; COMMUNITY;
D O I
10.1177/2047487316638201
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim European society of cardiology (ESC) guidelines recommend that cardiovascular disease (CVD) risk stratification in asymptomatic individuals is based on the Systematic Coronary Risk Evaluation (SCORE) algorithm, which estimates individual 10-year risk of death from CVD. We assessed the potential improvement in CVD risk stratification of 19 easily available risk markers by adding them to the SCORE algorithm. Methods and results We followed 8476 individuals without prior CVD or diabetes from the Copenhagen City Heart study. The 19 risk markers were: major and minor electrocardiographic (ECG) abnormalities, heart rate, family history (of ischaemic heart disease), body mass index (BMI), waist-hip ratio, walking duration and pace, leisure time physical activity, forced expiratory volume (FEV)(1%pred), household income, education, vital exhaustion, high-density lipoprotein (HDL) cholesterol, triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), high-sensitive C-reactive protein (hsCRP) and fibrinogen. With the exception of family history, BMI, triglycerides and minor ECG changes, all risk markers remained significantly associated with CVD mortality after adjustment for SCORE variables. However, the addition of the remaining 15 risk markers resulted in only small changes in discrimination calculated by area under the curve (AUC) and integrated discrimination improvement (IDI) and no improvement in net reclassification improvement (NRI). HsCRP improved AUC by 0.006 (p=0.015) and IDI by 0.012 (p=0.002); FEV1%pred improved AUC by 0.006 (p=0.032) and IDI by 0.006 (p=0.029). In the intermediate risk group FEV1%pred, education, vital exhaustion and ApoA1 all improved NRI but FEV1%pred was the only risk marker to significantly improve both IDI, AUC and NRI. Conclusion The SCORE algorithm predicted CVD mortality in a Danish cohort well. Despite strong association with CVD mortality, the individual addition of 19 easily available risk makers to the SCORE model resulted in small risk stratification improvements.
引用
收藏
页码:1546 / 1556
页数:11
相关论文
共 50 条
  • [1] Risk prediction is improved by adding markers of subclinical organ damage to SCORE
    Sehestedt, Thomas
    Jeppesen, Jorgen
    Hansen, Tine W.
    Wachtell, Kristian
    Ibsens, Hans
    Torp-Petersen, Christian
    Hildebrandt, Per
    Olsen, Michael H.
    EUROPEAN HEART JOURNAL, 2010, 31 (07) : 883 - 891
  • [2] Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by socioeconomic position: results from a study in British men
    Ramsay, Sheena E.
    Morris, Richard W.
    Whincup, Peter H.
    Papacosta, A. Olia
    Thomas, Mary C.
    Wannamethee, S. Goya
    EUROPEAN JOURNAL OF CARDIOVASCULAR PREVENTION & REHABILITATION, 2011, 18 (02): : 186 - 193
  • [3] Hypercholesterolaemia and risk of coronary heart disease in the elderly: Impact of age The Copenhagen City Heart Study
    Iversen, Allan
    Jensen, Jan Skov
    Scharling, Henrik
    Schnohr, Peter
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2009, 20 (02) : 139 - 144
  • [4] Risk prediction for coronary heart disease by a genetic risk score-results from the Heinz Nixdorf Recall study
    Pechlivanis, Sonali
    Lehmann, Nils
    Hoffmann, Per
    Noethen, Markus M.
    Joeckel, Karl-Heinz
    Erbel, Raimund
    Moebus, Susanne
    BMC MEDICAL GENETICS, 2020, 21 (01)
  • [5] Evaluation of Newer Risk Markers for Coronary Heart Disease Risk Classification A Cohort Study
    Kavousi, Maryam
    Elias-Smale, Suzette
    Rutten, Joost H. W.
    Leening, Maarten J. G.
    Vliegenthart, Rozemarijn
    Verwoert, Germaine C.
    Krestin, Gabriel P.
    Oudkerk, Matthijs
    de Maat, Moniek P. M.
    Leebeek, Frank W. G.
    Mattace-Raso, Francesco U. S.
    Lindemans, Jan
    Hofman, Albert
    Steyerberg, Ewout W.
    van der Lugt, Aad
    van den Meiracker, Anton H.
    Witteman, Jacqueline C. M.
    ANNALS OF INTERNAL MEDICINE, 2012, 156 (06) : 438 - U88
  • [6] Systematic COronary Risk Evaluation (SCORE) and 20-year risk of cardiovascular mortality and cancer
    Wohlfahrt, Peter
    Bruthans, Jan
    Krajcoviechova, Alena
    Sulc, Pavel
    Linhart, Ales
    Filipovsky, Jan
    Mayer, Otto, Jr.
    Widimsky, Jiri, Jr.
    Blaha, Milan
    Abrahamova, Jitka
    Cifkova, Renata
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2020, 79 : 63 - 69
  • [7] Ranking of psychosocial and traditional risk factors by importance for coronary heart disease: the Copenhagen City Heart Study
    Schnohr, Peter
    Marott, Jacob L.
    Kristensen, Tage S.
    Gyntelberg, Finn
    Gronbaek, Morten
    Lange, Peter
    Jensen, Magnus T.
    Jensen, Gorm B.
    Prescott, Eva
    EUROPEAN HEART JOURNAL, 2015, 36 (22) : 1385 - +
  • [8] Cardiovascular Risk Prediction Is Improved by Adding Asymptomatic Coronary Status to Routine Risk Assessment in Type 2 Diabetic Patients
    Cosson, Emmanuel
    Minh Tuan Nguyen
    Chanu, Bernard
    Banu, Isabela
    Chiheb, Sabrina
    Balta, Cristina
    Takbou, Karim
    Valensi, Paul
    DIABETES CARE, 2011, 34 (09) : 2101 - 2107
  • [9] Electrocardiographic PR Interval Duration and Cardiovascular Risk: Results From the Copenhagen ECG Study
    Rasmussen, Peter Vibe
    Nielsen, Jonas Bille
    Skov, Morten Wagner
    Pietersen, Adrian
    Graff, Claus
    Lind, Bent
    Struijk, Johannes Jan
    Olesen, Morten Salling
    Haunso, Stig
    Kober, Lars
    Svendsen, Jesper Hastrup
    Holst, Anders Gaarsdal
    CANADIAN JOURNAL OF CARDIOLOGY, 2017, 33 (05) : 674 - 681
  • [10] Does adding information on job strain improve risk prediction for coronary heart disease beyond the standard Framingham risk score? The Whitehall II study
    Kivimaeki, Mika
    Nyberg, Solja T.
    Batty, G. David
    Shipley, Martin J.
    Ferrie, Jane E.
    Virtanen, Marianna
    Marmot, Michael G.
    Vahtera, Jussi
    Singh-Manoux, Archana
    Hamer, Mark
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (06) : 1577 - 1584