First Inertial Confinement Fusion Implosion Experiment

被引:21
|
作者
Lan, Ke [1 ,2 ,3 ]
Dong, Yunsong [4 ]
Wu, Junfeng [1 ]
Li, Zhichao [4 ]
Chen, Yaohua [1 ]
Cao, Hui [1 ]
Hao, Liang [1 ]
Li, Shu [1 ]
Ren, Guoli [1 ]
Jiang, Wei [4 ]
Yin, Chuansheng [4 ]
Sun, Chuankui [4 ]
Chen, Zhongjing [4 ]
Huang, Tianxuan [4 ]
Xie, Xufei [4 ]
Li, Sanwei [4 ]
Miao, Wenyong [4 ]
Hu, Xin [4 ]
Tang, Qi [4 ]
Song, Zifeng [4 ]
Chen, Jiabin [4 ]
Xiao, Yunqing [4 ]
Che, Xingsen [4 ]
Deng, Bo [4 ]
Wang, Qiangqiang [4 ]
Deng, Keli [4 ]
Cao, Zhurong [4 ]
Peng, Xiaoshi [4 ]
Liu, Xiangming [4 ]
He, Xiaoan [4 ]
Yan, Ji [4 ]
Pu, Yudong [4 ]
Tu, Shaoyong [4 ]
Yuan, Yongteng [4 ]
Yu, Bo [4 ]
Wang, Feng [4 ]
Yang, Jiamin [4 ]
Jiang, Shaoen [4 ]
Gao, Lin [4 ]
Xie, Jun [4 ]
Zhang, Wei [4 ]
Liu, Yiyang [4 ]
Zhang, Zhanwen [4 ]
Zhang, Haijun [4 ]
He, Zhibing [4 ]
Du, Kai [4 ]
Wang, Liquan [4 ]
Chen, Xu [4 ]
Zhou, Wei [4 ]
Huang, Xiaoxia [4 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Peking Univ, HEDPS, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[4] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Sichuan, Peoples R China
[5] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
[6] China Acad Engn Phys, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
LASER; HOHLRAUMS; IGNITION; REGION; ENERGY; FLUX;
D O I
10.1103/PhysRevLett.127.245001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In inertial confinement approaches to fusion, the asymmetry of target implosion is a major obstacle to achieving high gain in the laboratory. A recently proposed octahedral spherical hohlraum makes it possible to naturally create spherical target irradiation without supplementary symmetry control. Before any decision is made to pursue an ignition-scale laser system based on the octahedral hohlraum, one needs to test the concept with the existing facilities. Here, we report a proof-of-concept experiment for the novel octahedral hohlraum geometry on the cylindrically configured SGIII laser facility without a symmetry control. All polar and equatorial self-emission images of the compressed target show a near round shape of convergence ratio 15 under both square and shaped laser pulses. The observed implosion performances agree well with the ideal spherical implosion simulation. It also shows limitations with using the existing facilities and adds further weight to the need to move to a spherical port geometry for future ignition laser facilities.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Inertial confinement fusion and prospects for power production
    Edwards, C. B.
    Danson, C. N.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2015, 3
  • [22] Neutron imaging of inertial confinement fusion implosions
    Fittinghoff, D. N.
    Birge, N.
    Geppert-Kleinrath, V.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02)
  • [23] Development of the large neutron imaging system for inertial confinement fusion experiments
    Caillaud, T.
    Landoas, O.
    Briat, M.
    Kime, S.
    Rosse, B.
    Thfoin, I.
    Bourgade, J. L.
    Disdier, L.
    Glebov, V. Yu.
    Marshall, F. J.
    Sangster, T. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (03)
  • [24] Study of antiprotons as drivers in inertial confinement fusion by fast ignition method
    Azizi, Maryam
    Khanbabaei, Babak
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [25] Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments
    Ruby, J. J.
    Pak, A.
    Field, J. E.
    Ma, T.
    Spears, B. K.
    Benedetti, L. R.
    Bradley, D. K.
    Hopkins, L. F. Berzak
    Casey, D. T.
    Doeppner, T.
    Eder, D.
    Fittinghoff, D.
    Grim, G.
    Hatarik, R.
    Hinkel, D. E.
    Izumi, N.
    Kilkenny, J. D.
    Khan, S. F.
    Knauer, J. P.
    Kritcher, A. L.
    Merrill, F. E.
    Moody, J. D.
    Nagel, S. R.
    Park, H. -S.
    Salmonson, J. D.
    Sayre, D. B.
    Callahan, D. A.
    Hsing, W. W.
    Hurricane, O. A.
    Patel, P. K.
    Edwards, M. J.
    PHYSICS OF PLASMAS, 2016, 23 (07)
  • [26] First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
    Hu, S. X.
    Collins, L. A.
    Goncharov, V. N.
    Kress, J. D.
    McCrory, R. L.
    Skupsky, S.
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [27] First-principles equation-of-state table of deuterium for inertial confinement fusion applications
    Hu, S. X.
    Militzer, B.
    Goncharov, V. N.
    Skupsky, S.
    PHYSICAL REVIEW B, 2011, 84 (22)
  • [28] Machine learning on the ignition threshold for inertial confinement fusion
    Yang, Chen
    Zhang, Cunbo
    Gao, Congzhang
    Xu, Xuefeng
    Yu, Chengxin
    Wang, Shuaichuang
    Fan, Zhengfeng
    Liu, Jie
    PHYSICS OF PLASMAS, 2022, 29 (08)
  • [29] Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
    Chang, Py.
    Betti, R.
    Spears, B. K.
    Anderson, K. S.
    Edwards, J.
    Fatenejad, M.
    Lindl, J. D.
    McCrory, R. L.
    Nora, R.
    Shvarts, D.
    PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [30] Development of Compton radiography of inertial confinement fusion implosions
    Tommasini, R.
    Hatchett, S. P.
    Hey, D. S.
    Iglesias, C.
    Izumi, N.
    Koch, J. A.
    Landen, O. L.
    MacKinnon, A. J.
    Sorce, C.
    Delettrez, J. A.
    Glebov, V. Yu.
    Sangster, T. C.
    Stoeckl, C.
    PHYSICS OF PLASMAS, 2011, 18 (05)