Optimized Ni-rich LiNi0.83Co0.06Mn0.06Al0.05O2 cathode material with a Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor coating for Lithium-ion batteries

被引:19
作者
Chen, Feng [1 ]
Zhu, Xinqi [1 ]
Dai, Weilong [1 ]
Yao, Congcong [2 ]
Qian, Junchao [2 ]
Chen, Zhigang [2 ]
Liu, Chengbao [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Jiangsu Key Lab Environm Funct Mat, Suzhou 215009, Peoples R China
[2] Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou 215009, Peoples R China
关键词
LiNi0.83Co0.06Mn0.06Al0.05O2; Li1.3Al0.3Ti1.7(PO4)(3) surface modification; Electrochemical properties; Safety and environmental reliability properties; ELECTROCHEMICAL PERFORMANCE; LINI0.8CO0.1MN0.1O2; CATHODE; ELEVATED-TEMPERATURE; STABILITY; LI;
D O I
10.1016/j.jallcom.2022.166277
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high nickel cathode LiNi0.83Co0.06Mn0.06Al0.05O2 (combination of NCM and NCA) coated with the Li+ conductor Li1.3Al0.3Ti1.7(PO4)(3) in various mass fractions was prepared via using the typical sol-gel process. The LiNi0.83Co0.06Mn0.06Al0.05O2 after the Li1.3Al0.3Ti1.7(PO4)(3) covering demonstrated the similar crystal structure and particle morphology in comparison with the bare cathode. The electrochemical test results indicated the superior rate capabilities and cycling performances were acquired for the coated cathodes due to the presence of the Li1.3Al0.3Ti1.7(PO4)(3) film on the surface of LiNi0.83Co0.06Mn0.06Al0.05O2. The 2 wt% Li1.3Al0.3Ti1.7(PO4)(3 )covered LiNi0.83Co0.06Mn0.06Al0.05O2 exhibited the greatest electrochemical performance with a large cycle retention rate of 90.9% over 300 cycles at 45 degrees C, rate capacity of 139.8 mAh g(-1) at 5 C current density, and a high capability of 126.5 mAh g(-1 )at - 30 degrees C, superior than those (80.9%, 99.8 mAh g(-1), 71.3mAh g(-1) accordingly) of the bare cathode. In addition, the safety and environmental reliability tests of pouch batteries suggested the Li1.3Al0.3Ti1.7(PO4)(3) film on the surface of cathode acted as a protective layer to promote the stability for application. (C) 2022 Published by Elsevier B.V.
引用
收藏
页数:16
相关论文
共 66 条
[1]   Enhanced performance of a Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material formed through Taylor flow synthesis and surface modification with Li2MoO4 [J].
Babulal, Lakshmipriya Musuvadhi ;
Yang, Chun-Chen ;
Wu, She-huang ;
Chien, Wen-Chen ;
Jose, Rajan ;
Lue, Shingjiang Jessie .
CHEMICAL ENGINEERING JOURNAL, 2021, 413
[2]   The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material [J].
Chen, Tao ;
Li, Xiang ;
Wang, Hao ;
Yan, Xinxiu ;
Wang, Lei ;
Deng, Bangwei ;
Ge, Wujie ;
Qu, Meizhen .
JOURNAL OF POWER SOURCES, 2018, 374 :1-11
[3]   Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: Towards superior cycling stability at elevated temperature and high voltage [J].
Chen, Zhen ;
Kim, Guk-Tae ;
Guang, Yang ;
Bresser, Dominic ;
Diemant, Thomas ;
Huang, Yizhong ;
Copley, Mark ;
Behm, Rolf Juergen ;
Passerini, Stefano ;
Shen, Zexiang .
JOURNAL OF POWER SOURCES, 2018, 402 :263-271
[4]   Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3 [J].
Choi, Ji-won ;
Lee, Jae-won .
JOURNAL OF POWER SOURCES, 2016, 307 :63-68
[5]   Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes [J].
Du, Ya-Hao ;
Sheng, Hang ;
Meng, Xin-Hai ;
Zhang, Xu-Dong ;
Zou, Yu-Gang ;
Liang, Jia-Yan ;
Fan, Min ;
Wang, Fuyi ;
Tang, Jilin ;
Cao, Fei-Fei ;
Shi, Ji-Lei ;
Cao, Xiu-Fang ;
Guo, Yu-Guo .
NANO ENERGY, 2022, 94
[6]   Surface Modification Engineering Enabling 4.6 V Single-Crystalline Ni-Rich Cathode with Superior Long-Term Cyclability [J].
Fan, Xin-Ming ;
Huang, Ying-De ;
Wei, Han-Xin ;
Tang, Lin-Bo ;
He, Zhen-Jiang ;
Yan, Cheng ;
Mao, Jing ;
Dai, Ke-Hua ;
Zheng, Jun-Chao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
[7]   Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4 [J].
Fu, Qiang ;
Du, Fei ;
Bian, Xiaofei ;
Wang, Yuhui ;
Yan, Xiao ;
Zhang, Yongquan ;
Zhu, Kai ;
Chen, Gang ;
Wang, Chunzhong ;
Wei, Yingjin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7555-7562
[8]   Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer [J].
Grenier, Antonin ;
Liu, Hao ;
Wiaderek, Kamila M. ;
Lebens-Higgins, Zachary W. ;
Borkiewicz, Olaf J. ;
Piper, Louis F. J. ;
Chupas, Peter J. ;
Chapman, Karena W. .
CHEMISTRY OF MATERIALS, 2017, 29 (17) :7345-7352
[9]   Y2O3 modification on nickel-rich LiNi0.8Co0.1Mn0.1O2 with improved electrochemical performance in lithium-ion batteries [J].
He, Rui ;
Bai, Xue ;
Wei, Aijia ;
Zhang, Lihui ;
Liu, Peng ;
Liu, Zhenfa .
JOURNAL OF RARE EARTHS, 2022, 40 (02) :309-317
[10]   In-situ coupling SnS with nitrogen-doped porous carbon for boosting Li-storage in lithium-ion battery and capacitor [J].
Huang, Jiaxi ;
Chen, Jing ;
Ma, Lin ;
Liu, Qianlan ;
Wang, Meijuan ;
Liao, Lusheng ;
Rujiralai, Thitima ;
Xu, Limei .
ELECTROCHIMICA ACTA, 2021, 365