Introducing Berry phase gradients along the optical path via propagation-dependent polarization transformations

被引:22
作者
Dorrah, Ahmed H. [1 ]
Tamagnone, Michele [1 ,2 ]
Rubin, Noah A. [1 ]
Zaidi, Aun [1 ]
Capasso, Federico [1 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Fdn Ist Italiano Tecnol, Genoa, Italy
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
metasurfaces; nanophotonics; nondiffracting beams; optical angular momentum; polarization optics; structured light; ORBITAL ANGULAR-MOMENTUM; AHARONOV-BOHM OSCILLATIONS; TOPOLOGICAL PHASE; GEOMETRIC PHASE; LIGHT; SPIN; BEAMS; SHIFT;
D O I
10.1515/nanoph-2021-0560
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As a classical or quantum system undergoes a cyclic evolution governed by slow change in its parameter space, it acquires a topological phase factor known as the geometric or Berry phase. One popular manifestation of this phenomenon is the Gouy phase which arises when the radius of curvature of the wavefront changes adiabatically in a cyclic manner, for e.g., when focused by a lens. Here, we report on a new manifestation of the Berry phase in 3D structured light which arises when its polarization state adiabatically evolves along the optical path. We show that such a peculiar evolution of angular momentum, which occurs under free space propagation, is accompanied by an accumulated phase shift that elegantly coincides with Berry's prediction. Unlike the conventional dynamic phase, which accumulates monotonically with propagation, the Berry phase observed here can be engineered on demand, thereby enabling new possibilities; such as spin-dependent spatial frequency shifts, and modified phase matching in resonators and nonlinear interactions. Our findings expand the laws of wave propagation and can be applied in optics and beyond.
引用
收藏
页码:713 / 725
页数:13
相关论文
共 72 条
[1]   Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light [J].
Adachi, Hiroto ;
Akahoshi, Shin ;
Miyakawa, Kenji .
PHYSICAL REVIEW A, 2007, 75 (06)
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[5]   Aharonov-Bohm oscillations in carbon nanotubes [J].
Bachtold, A ;
Strunk, C ;
Salvetat, JP ;
Bonard, JM ;
Forró, L ;
Nussbaumer, T ;
Schönenberger, C .
NATURE, 1999, 397 (6721) :673-675
[6]   Aharonov-Bohm Oscillations in Disordered Topological Insulator Nanowires [J].
Bardarson, J. H. ;
Brouwer, P. W. ;
Moore, J. E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[7]   Geometric phase memories [J].
Berry, Michael .
NATURE PHYSICS, 2010, 6 (03) :148-150
[9]   Formation of helical beams by use of Pancharatnam-Berry phase optical elements [J].
Biener, G ;
Niv, A ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2002, 27 (21) :1875-1877
[10]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808