Bounds for Eigenvalues of the p-Laplacian with Weight Function of Bounded Variation

被引:1
作者
Binding, P. A. [1 ]
Volkmer, H. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
来源
TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS | 2010年 / 203卷
关键词
p-Laplacian; eigenvalue bounds; Prufer angle; total variation; Kronecker's theorem; ASYMPTOTIC-BEHAVIOR;
D O I
10.1007/978-3-0346-0161-0_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Prufer angle methods are used to establish bounds for eigenvalues of the equation -(vertical bar y'vertical bar(p-2)y')' = lambda(p - 1)r(x)vertical bar y vertical bar(p-2) involving the p-Laplacian. The bounds are expressed in terms of a generalized total variation of the coefficient r. An application of Kronecker's theorem shows that the bounds are optimal in generic cases.
引用
收藏
页码:99 / +
页数:3
相关论文
共 16 条
[1]  
Binding P, 2003, STUD SCI MATH HUNG, V40, P375
[2]   Oscillation and interlacing for various spectra of the p-Laplacian [J].
Binding, Paul A. ;
Rynne, Bryan P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2780-2791
[3]   Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator [J].
Bonder, JF ;
Pinasco, JP .
ARKIV FOR MATEMATIK, 2003, 41 (02) :267-280
[4]   Titchmarsh's asymptotic formula for periodic eigenvalues and an extension to the p-Laplacian [J].
Brown, B. M. ;
Eastham, M. S. P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1255-1266
[5]   Maps of bounded variation with values in a metric space [J].
Chistyakov, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) :630-631
[6]  
Eastham M.S.P., 1975, LECT NOTES MATH, V448, P126
[7]  
Eberhard W, 2000, MATH NACHR, V213, P57, DOI 10.1002/(SICI)1522-2616(200005)213:1<57::AID-MANA57>3.0.CO
[8]  
2-J
[9]  
ELBERT A, 1979, QUALITATIVE THEORY D, P153
[10]   ASYMPTOTIC-BEHAVIOR OF THE EIGENVALUES OF THE P-LAPLACIAN [J].
FRIEDLANDER, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (8-9) :1059-1069