Synchronisation of chaotic systems using a novel sampled-data fuzzy controller

被引:5
作者
Feng Yi-Fu [1 ,2 ]
Zhang Qing-Ling [2 ]
机构
[1] Jilin Normal Univ, Sch Math, Siping 136000, Peoples R China
[2] Northeastern Univ, Inst Syst Sci, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
chaotic systems; synchronisation; sampled-data systems; parameter-dependent Lyapunov-Krasovskii functional; NONLINEAR FEEDBACK-CONTROL; SLIDING MODE CONTROL; ADAPTIVE SYNCHRONIZATION; IMPULSIVE SYNCHRONIZATION; PARAMETER UNCERTAINTY; BACKSTEPPING DESIGN; UNIFIED APPROACH; NEURAL-NETWORKS; LINEAR-SYSTEMS; LIU SYSTEM;
D O I
10.1088/1674-1056/20/1/010101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the synchronisation of chaotic systems using a sampled-data fuzzy controller and is meaningful for many physical real-life applications. Firstly, a Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic systems that contain some nonlinear terms, then a type of fuzzy sampled-data controller is proposed and an error system formed by the response and drive chaotic system. Secondly, relaxed LMI-based synchronisation conditions are derived by using a new parameter-dependent Lyapunov-Krasovskii functional and relaxed stabilisation techniques for the underlying error system. The derived LMI-based conditions are used to aid the design of a sampled-data fuzzy controller to achieve the synchronisation of chaotic systems. Finally, a numerical example is provided to illustrate the erectiveness of the proposed results.
引用
收藏
页数:9
相关论文
共 29 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J].
Chen, MY ;
Han, ZZ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :709-716
[3]   Impulsive control and synchronization of unified chaotic system [J].
Chen, SH ;
Yang, Q ;
Wang, CP .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :751-758
[4]   Robust sampled-data stabilization of linear systems: an input delay approach [J].
Fridman, E ;
Seuret, A ;
Richard, JP .
AUTOMATICA, 2004, 40 (08) :1441-1446
[5]   Impulsive synchronization of different hyperchaotic (chaotic) systems [J].
Haeri, Mohammad ;
Dehghani, Mahsa .
CHAOS SOLITONS & FRACTALS, 2008, 38 (01) :120-131
[6]   Adaptive synchronization of uncertain Liu system via nonlinear input [J].
Hu Jia ;
Zhang Qun-Jiao .
CHINESE PHYSICS B, 2008, 17 (02) :503-506
[7]   Synchronization of chaotic systems with uncertainties using robust terminal sliding mode control [J].
Huang Guo-Yong ;
Jiang Chang-Sheng ;
Wang Yu-Hui .
ACTA PHYSICA SINICA, 2007, 56 (11) :6224-6229
[8]   Master-slave synchronization of general Lur'e systems with time-varying delay and parameter uncertainty [J].
Huang, H ;
Li, HX ;
Zhong, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02) :281-294
[9]   Synchronization of chaotic systems using time-delayed fuzzy state-feedback controller [J].
Lam, H. K. ;
Ling, Wing-Kuen ;
Iu, Herbert Ho-Ching ;
Ling, Steve S. H. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (03) :893-903
[10]   Impulsive control for synchronization of nonlinear Rössler chaotic systems [J].
College of Computer Science and Engineering, Chongqing University, Chongqing 400030, China .
Chin. Phys., 2006, 12 (2890-2893) :2890-2893