An Orlicz-space approach to superlinear elliptic systems

被引:70
作者
de Figueiredo, DG [1 ]
do O, JM
Ruf, B
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58059900 Joao Pessoa, Paraiba, Brazil
[3] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
关键词
elliptic system; critical growth; Orlicz space; variational methods;
D O I
10.1016/j.jfa.2004.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study superlinear elliptic systems in Hamiltonian form. Using an Orlicz-space setting, we extend the notion of critical growth to superlinear nonlinearities which do not have a polynomial growth. Existence of nontrivial solutions is proved for superlinear nonlinearities which are subcritical in this generalized sense. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 496
页数:26
相关论文
共 9 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES PURE
[2]  
DEFIGUEIREDO DG, 1994, T AM MATH SOC, V343, P99
[3]  
DEFIGUEIREDO DG, 1996, CALCULUS VARIATIONS, V4
[4]  
GOSSEZ JP, 1976, TRABALHO MATEMATICA, V103
[5]   DIFFERENTIAL-SYSTEMS WITH STRONGLY INDEFINITE VARIATIONAL STRUCTURE [J].
HULSHOF, J ;
VANDERVORST, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 114 (01) :32-58
[6]  
Krasnoselskii M.A., 1961, Convex Functions and Orlicz Spaces, pxi+249
[7]  
Nirenberg L., 1974, LECT NOTES
[8]  
Rabinowitz P.H, 1986, CBMS REGIONAL C SERI, V65
[9]  
Rao M. M., 1991, MONOGRAPHS TXB PURE, V146