Quantum biology revisited

被引:308
作者
Cao, Jianshu [1 ]
Cogdell, Richard J. [2 ]
Coker, David F. [3 ]
Duan, Hong-Guang [4 ,5 ,6 ]
Hauer, Jurgen [7 ,8 ]
Kleinekathoefer, Ulrich [9 ]
Jansen, Thomas L. C. [10 ]
Mancal, Tomas [11 ]
Miller, R. J. Dwayne [4 ,6 ,12 ,13 ]
Ogilvie, Jennifer P. [14 ]
Prokhorenko, Valentyn, I [4 ]
Renger, Thomas [15 ]
Tan, Howe-Siang [16 ]
Tempelaar, Roel [17 ,20 ]
Thorwart, Michael [5 ,6 ]
Thyrhaug, Erling [7 ,8 ]
Westenhoff, Sebastian [18 ]
Zigmantas, Donatas [19 ]
机构
[1] MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Glasgow, Inst Mol Cell & Syst Biol, Coll Med Vet & Life Sci, Glasgow G12 8QQ, Lanark, Scotland
[3] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Max Planck Inst Struct & Dynam Matter, Atomically Resolved Dynam Dept, D-22761 Hamburg, Germany
[5] Univ Hamburg, Inst Theoret Phys 1, Jungiusstr 9, D-20355 Hamburg, Germany
[6] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany
[7] Tech Univ Munich, Dynam Spektroskopien, Fak Chem, Lichtenbergstr 4, D-85748 Garching, Germany
[8] TU Wien, Photon Inst, A-1040 Vienna, Austria
[9] Jacobs Univ Bremen, Dept Phys & Earth Sci, Campus Ring 1, D-28759 Bremen, Germany
[10] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[11] Charles Univ Prague, Fac Math & Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
[12] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[13] Univ Toronto, Dept Phys, Toronto, ON M5S 3H6, Canada
[14] Univ Michigan, Dept Phys, Ann Arbor, MI 48108 USA
[15] Johannes Kepler Univ Linz, Dept Theoret Biophys, Inst Theoret Phys, Altenberger Str 69, A-4040 Linz, Austria
[16] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, 21 Nanyang Link, Singapore 637371, Singapore
[17] Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA
[18] Univ Gothenburg, Dept Chem & Mol Biol, S-40530 Gothenburg, Sweden
[19] Lund Univ, Chem Phys, Box 124, S-22100 Lund, Sweden
[20] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 14期
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
EXCITATION-ENERGY TRANSFER; 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; REDUCED DENSITY-MATRICES; MATTHEWS-OLSON COMPLEX; FMO ANTENNA PROTEIN; TIME EVOLUTION; PROSTHECOCHLORIS-AESTUARII; SEMICLASSICAL DESCRIPTION; EXCITON DELOCALIZATION; CHLOROBACULUM-TEPIDUM;
D O I
10.1126/sciadv.aaz4888
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
引用
收藏
页数:11
相关论文
共 117 条