共 50 条
Impact of numerical relativity information on effective-one-body waveform models
被引:35
|作者:
Nagar, Alessandro
[1
,2
,3
,4
]
Riemenschneider, Gunnar
[5
,6
]
Pratten, Geraint
[7
]
机构:
[1] Ctr Fermi Museo Stor Fis, I-00184 Rome, Italy
[2] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
[3] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[4] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[5] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[6] Tech Univ Munich, Phys Dept, Fames Franck Str 1, D-85748 Garching, Germany
[7] Univ Illes Balears, IEEC IAC3, Palma De Mallorca 07122, Spain
关键词:
D O I:
10.1103/PhysRevD.96.084045
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We present a comprehensive comparison of the spin-aligned effective-one-body (EOB) waveform model of Nagar et al. [Phys. Rev. D 93, 044046 (2016)], informed using 39 numerical-relativity (NR) data sets, against a set of 149 l = m = 2 NR waveforms freely available through the Simulating Extreme Spacetimes (SXS) catalog. We find that, without further calibration, these EOBNR waveforms have unfaithfulness-at design Advanced-LIGO sensitivity and evaluated with total mass M varying as 10M(circle dot) <= M <= 200M(circle dot) - always below 1% against all NR wa\veforms except for three outliers, that still never exceed the 3% level; with a minimal retuning of the (effective) next-to-next-to-next-to-leading-order spin-orbit coupling parameter for the non-equal-mass and non-equal-spin sector, that only needs three more NR waveforms, one is left with another two (though different) outliers, with maximal unfaithfulness of up to only 2% for a total mass of 200M(circle dot). We show this is the effect of slight inaccuracies in the phenomenological description of the postmerger waveform of Del Pozzo and Nagar [Phys. Rev. D 95, 124034 (2017)] that was constructed by interpolating over only 40 NR simulations. We argue that this can be easily fixed by using either an alternative ringdown description (e.g., the superposition of quasi-normal-modes) or an improved version of the phenomenological representation. By analyzing a NR waveform with a mass ratio 8 and dimensionless spins +0.85 obtained with the BAM code, we conclude that the model would benefit from NR simulations specifically targeted at improving the postmerger-ringdown phenomenological fits for mass ratios greater than or similar to 8 and spins greater than or similar to 0.8. We finally show that some of the longest SXS q = 7 waveforms suffer from systematic uncertainties in the postmerger-ringdown part that are interpreted as due to unphysical drifts of the center of mass: thus some care should be applied when these waveforms are used for informing analytical models.
引用
收藏
页数:26
相关论文