Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides

被引:8
作者
Thiele, Frederik [1 ]
Vom Bruch, Felix [2 ]
Brockmeier, Julian [1 ]
Protte, Maximilian [1 ]
Hummel, Thomas [1 ]
Ricken, Raimund [2 ]
Quiring, Victor [2 ]
Lengeling, Sebastian [2 ]
Herrmann, Harald [2 ]
Eigner, Christof [2 ]
Silberhorn, Christine [2 ]
Bartley, Tim J. [2 ]
机构
[1] Paderborn Univ, Dept Phys, Mesoscop Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
[2] Paderborn Univ, Dept Phys, Integrated Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
来源
JOURNAL OF PHYSICS-PHOTONICS | 2022年 / 4卷 / 03期
基金
欧洲研究理事会;
关键词
lithium niobate; photonics; cryogenic; low temperature; modulator; electro-optics; OPERATION;
D O I
10.1088/2515-7647/ac6c63
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Lithium niobate is a promising platform for integrated quantum optics. In this platform, we aim to efficiently manipulate and detect quantum states by combining superconducting single photon detectors and modulators. The cryogenic operation of a superconducting single photon detector dictates the optimisation of the electro-optic modulators under the same operating conditions. To that end, we characterise a phase modulator, directional coupler, and polarisation converter at both ambient and cryogenic temperatures. The operation voltage V-pi(/2) of these modulators increases, due to the decrease in the electro-optic effect, by 74% for the phase modulator, 84% for the directional coupler and 35% for the polarisation converter below 8.5K. The phase modulator preserves its broadband nature and modulates light in the characterised wavelength range. The unbiased bar state of the directional coupler changed by a wavelength shift of 85 nm while cooling the device down to 5K. The polarisation converter uses periodic poling to phasematch the two orthogonal polarisations. The phasematched wavelength of the utilised poling changes by 112nm when cooling to 5K.
引用
收藏
页数:11
相关论文
共 54 条
[41]   DIRECTIONAL COUPLER SWITCHES, MODULATORS, AND FILTERS USING ALTERNATING DELTA-BETA TECHNIQUES [J].
SCHMIDT, RV ;
ALFERNESS, RC .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1979, 26 (12) :1099-1108
[42]   Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits [J].
Sharapova, P. R. ;
Luo, K. H. ;
Herrmann, H. ;
Reichelt, M. ;
Meier, T. ;
Silberhorn, C. .
NEW JOURNAL OF PHYSICS, 2017, 19
[43]  
Smirnov E., 2018, Journal of Physics: Conference Series, V1124, DOI 10.1088/1742-6596/1124/5/051025
[44]  
Sohler W, 2008, OPT PHOTONICS NEWS, V19, P24, DOI 10.1364/OPN.19.1.000024
[45]   A superconducting nanowire single photon detector on lithium niobate [J].
Tanner, M. G. ;
Alvarez, L. San Emeterio ;
Jiang, W. ;
Warburton, R. J. ;
Barber, Z. H. ;
Hadfield, R. H. .
NANOTECHNOLOGY, 2012, 23 (50)
[46]   Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides [J].
Thiele, Frederik ;
vom Bruch, Felix ;
Quiring, Victor ;
Ricken, Raimund ;
Herrmann, Harald ;
Eigner, Christof ;
Silberhorn, Christine ;
Bartley, Tim J. .
OPTICS EXPRESS, 2020, 28 (20) :28961-28968
[47]   Integrated photonic quantum technologies [J].
Wang, Jianwei ;
Sciarrino, Fabio ;
Laing, Anthony ;
Thompson, Mark G. .
NATURE PHOTONICS, 2020, 14 (05) :273-284
[48]   LITHIUM-NIOBATE - SUMMARY OF PHYSICAL-PROPERTIES AND CRYSTAL-STRUCTURE [J].
WEIS, RS ;
GAYLORD, TK .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1985, 37 (04) :191-203
[49]   COUPLED-MODE THEORY FOR GUIDED-WAVE OPTICS [J].
YARIV, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1973, QE 9 (09) :919-933
[50]  
YOSHIDA K, 1992, IEICE T ELECTRON, VE75C, P894