Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides

被引:6
作者
Thiele, Frederik [1 ]
Vom Bruch, Felix [2 ]
Brockmeier, Julian [1 ]
Protte, Maximilian [1 ]
Hummel, Thomas [1 ]
Ricken, Raimund [2 ]
Quiring, Victor [2 ]
Lengeling, Sebastian [2 ]
Herrmann, Harald [2 ]
Eigner, Christof [2 ]
Silberhorn, Christine [2 ]
Bartley, Tim J. [2 ]
机构
[1] Paderborn Univ, Dept Phys, Mesoscop Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
[2] Paderborn Univ, Dept Phys, Integrated Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
来源
JOURNAL OF PHYSICS-PHOTONICS | 2022年 / 4卷 / 03期
基金
欧洲研究理事会;
关键词
lithium niobate; photonics; cryogenic; low temperature; modulator; electro-optics; OPERATION;
D O I
10.1088/2515-7647/ac6c63
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Lithium niobate is a promising platform for integrated quantum optics. In this platform, we aim to efficiently manipulate and detect quantum states by combining superconducting single photon detectors and modulators. The cryogenic operation of a superconducting single photon detector dictates the optimisation of the electro-optic modulators under the same operating conditions. To that end, we characterise a phase modulator, directional coupler, and polarisation converter at both ambient and cryogenic temperatures. The operation voltage V-pi(/2) of these modulators increases, due to the decrease in the electro-optic effect, by 74% for the phase modulator, 84% for the directional coupler and 35% for the polarisation converter below 8.5K. The phase modulator preserves its broadband nature and modulates light in the characterised wavelength range. The unbiased bar state of the directional coupler changed by a wavelength shift of 85 nm while cooling the device down to 5K. The polarisation converter uses periodic poling to phasematch the two orthogonal polarisations. The phasematched wavelength of the utilised poling changes by 112nm when cooling to 5K.
引用
收藏
页数:11
相关论文
共 54 条
[1]  
Abrahams J., 1989, PROPERTIES LITHIUM N, V1, DOI [10.1002/crat.2170250617, DOI 10.1002/CRAT.2170250617]
[2]   Accurate measurements of the electro-optic coefficients and birefringence changes using an external modulation signal [J].
Aillerie, M ;
Abdi, F ;
Fontana, MD ;
Théofanous, N ;
Abarkan, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (04) :1627-1634
[3]   Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors [J].
Al Sayem, Ayed ;
Cheng, Risheng ;
Wang, Sihao ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2020, 116 (15)
[4]   WAVEGUIDE ELECTROOPTIC MODULATORS [J].
ALFERNESS, RC .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1982, 30 (08) :1121-1137
[5]   Quantum photonics at telecom wavelengths based on lithium niobate waveguides [J].
Alibart, Olivier ;
D'Auria, Virginia ;
De Micheli, Marc ;
Doutre, Florent ;
Kaiser, Florian ;
Labonte, Laurent ;
Lunghi, Tommaso ;
Picholle, Eric ;
Tanzilli, Sebastien .
JOURNAL OF OPTICS, 2016, 18 (10)
[6]   Cryogenic Second-Harmonic Generation in Periodically Poled Lithium Niobate Waveguides [J].
Bartnick, Moritz ;
Santandrea, Matteo ;
Hoepker, Jan Philipp ;
Thiele, Frederik ;
Ricken, Raimund ;
Quiring, Viktor ;
Eigner, Christof ;
Herrmann, Harald ;
Silberhorn, Christine ;
Bartley, Tim J. .
PHYSICAL REVIEW APPLIED, 2021, 15 (02)
[7]   Material platforms for integrated quantum photonics [J].
Bogdanov, S. ;
Shalaginov, M. Y. ;
Boltasseva, A. ;
Shalaev, V. M. .
OPTICAL MATERIALS EXPRESS, 2017, 7 (01) :111-132
[8]   Cryogenic operation of silicon photonic modulators based on the DC Kerr effect [J].
Chakraborty, Uttara ;
Carolan, Jacques ;
Clark, Genevieve ;
Bunandar, Darius ;
Gilbert, Gerald ;
Notaros, Jelena ;
Watts, Michael R. ;
Englund, Dirk R. .
OPTICA, 2020, 7 (10) :1385-1390
[9]  
Colangelo M., 2020, Conference on Lasers and Electro-Optics, OSA Technical Digest, pSM4O.4
[10]   Photonic Readout of Superconducting Nanowire Single Photon Counting Detectors [J].
de Cea, Marc ;
Wollman, Emma E. ;
Atabaki, Amir H. ;
Gray, Dodd J. ;
Shaw, Matthew D. ;
Ram, Rajeev J. .
SCIENTIFIC REPORTS, 2020, 10 (01)