The backward euler anisotropic a posteriori error analysis for parabolic integro-differential equations

被引:3
作者
Reddy, Gujji Murali Mohan [1 ]
Sinha, Rajen Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
parabolic integro-differential equations; finite element method; fully discrete scheme; optimal; anisotropic error estimator; FINITE-ELEMENT METHODS; ESTIMATOR; STABILITY;
D O I
10.1002/num.22049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro-differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz-Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.(c) 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309-1330, 2016
引用
收藏
页码:1309 / 1330
页数:22
相关论文
共 50 条
[41]   A note on the qualitative analysis of Volterra integro-differential equations [J].
Tunc, Cemil ;
Tunc, Osman .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :490-496
[42]   Weak Galerkin finite element methods for linear parabolic integro-differential equations [J].
Zhu, Ailing ;
Xu, Tingting ;
Xu, Qiang .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) :1357-1377
[43]   Compact Alternating Direction Implicit Scheme for Integro-Differential Equations of Parabolic Type [J].
Leijie Qiao ;
Da Xu .
Journal of Scientific Computing, 2018, 76 :565-582
[44]   Fully spectral collocation method for nonlinear parabolic partial integro-differential equations [J].
Fakhar-Izadi, Farhad ;
Dehghan, Mehdi .
APPLIED NUMERICAL MATHEMATICS, 2018, 123 :99-120
[45]   An explicit/implicit Galerkin domain decomposition procedure for parabolic integro-differential equations [J].
Pradhan, Debasish ;
Nataraj, Neela ;
Pani, Amiya K. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2008, 28 (1-2) :295-311
[46]   An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations [J].
Pani, Amiya K. ;
Yadav, Sangita .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) :71-99
[47]   ADI orthogonal spline collocation methods for parabolic partial integro-differential equations [J].
Pani, Amiya Kumar ;
Fairweather, Graeme ;
Fernandes, Ryan I. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (01) :248-276
[48]   QUALITATIVE ANALYSIS OF INTEGRO-DIFFERENTIAL EQUATIONS WITH VARIABLE RETARDATION [J].
Bohner, Martin ;
Tunc, Osman .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02) :639-657
[49]   On the Galerkin finite element approximations to multi-dimensional differential and integro-differential parabolic equations [J].
N. Yu. Bakaev .
BIT Numerical Mathematics, 1997, 37 :237-255
[50]   On the Galerkin finite element approximations to multi-dimensional differential and integro-differential parabolic equations [J].
Bakaev, NY .
BIT, 1997, 37 (02) :237-255