The backward euler anisotropic a posteriori error analysis for parabolic integro-differential equations

被引:3
作者
Reddy, Gujji Murali Mohan [1 ]
Sinha, Rajen Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
parabolic integro-differential equations; finite element method; fully discrete scheme; optimal; anisotropic error estimator; FINITE-ELEMENT METHODS; ESTIMATOR; STABILITY;
D O I
10.1002/num.22049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro-differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz-Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.(c) 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309-1330, 2016
引用
收藏
页码:1309 / 1330
页数:22
相关论文
共 50 条
[31]   FINITE ELEMENT METHOD FOR A CLASS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH INTERFACES [J].
Deka, B. ;
Deka, R. C. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (06) :823-847
[32]   Finite element method for a class of parabolic integro-differential equations with interfaces [J].
B. Deka ;
R. C. Deka .
Indian Journal of Pure and Applied Mathematics, 2013, 44 :823-847
[33]   Mixed virtual element method for integro-differential equations of parabolic type [J].
Suthar, Meghana ;
Yadav, Sangita ;
Kumar, Sarvesh .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) :2827-2856
[34]   A two-gird method for finite element solution of parabolic integro-differential equations [J].
Wang, Keyan .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) :3473-3490
[35]   A two-gird method for finite element solution of parabolic integro-differential equations [J].
Keyan Wang .
Journal of Applied Mathematics and Computing, 2022, 68 :3473-3490
[36]   AN hp-VERSION DISCONTINUOUS GALERKIN METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE [J].
Mustapha, K. ;
Brunner, H. ;
Mustapha, H. ;
Schoetzau, D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1369-1396
[37]   A posteriori error analysis for a continuous space-time finite element method for a hyperbolic integro-differential equation [J].
Saedpanah, Fardin .
BIT NUMERICAL MATHEMATICS, 2013, 53 (03) :689-716
[38]   A POSTERIORI ERROR ESTIMATE FOR BOUNDARY CONTROL PROBLEMS GOVERNED BY THE PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Gong, Wei ;
Yan, Ningning .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (01) :68-88
[39]   A posteriori error analysis for a continuous space-time finite element method for a hyperbolic integro-differential equation [J].
Fardin Saedpanah .
BIT Numerical Mathematics, 2013, 53 :689-716
[40]   Integral-type approximate controllability of linear parabolic integro-differential equations [J].
Zhou, Xiuxiang .
SYSTEMS & CONTROL LETTERS, 2017, 105 :44-47