The backward euler anisotropic a posteriori error analysis for parabolic integro-differential equations

被引:3
作者
Reddy, Gujji Murali Mohan [1 ]
Sinha, Rajen Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
parabolic integro-differential equations; finite element method; fully discrete scheme; optimal; anisotropic error estimator; FINITE-ELEMENT METHODS; ESTIMATOR; STABILITY;
D O I
10.1002/num.22049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro-differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz-Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.(c) 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309-1330, 2016
引用
收藏
页码:1309 / 1330
页数:22
相关论文
共 50 条
[21]   HDG Method for Nonlinear Parabolic Integro-Differential Equations [J].
Jain, Riya ;
Yadav, Sangita .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) :115-131
[22]   Weak convergence of the split-step backward Euler method for stochastic delay integro-differential equations [J].
Li, Yan ;
Xu, Qiuhong ;
Cao, Wanrong .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 227 :226-240
[23]   Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory [J].
Wang, Wansheng ;
Hong, Qingguo .
APPLIED NUMERICAL MATHEMATICS, 2019, 142 :28-46
[24]   Stability of backward differentiation formulas for Volterra integro-differential equations [J].
Vecchio, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) :565-576
[25]   A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Integro-Differential Equations [J].
Lu Zuliang ;
Huang Xiao .
2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, :1839-1844
[26]   Numerical approximate controllability for unidimensional parabolic integro-differential equations [J].
Zhao, Hengzhi ;
Zhang, Jiwei ;
Lu, Jing .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 204 :575-596
[27]   Finite central difference/finite element approximations for parabolic integro-differential equations [J].
Li, Wulan ;
Da, Xu .
COMPUTING, 2010, 90 (3-4) :89-111
[28]   Finite central difference/finite element approximations for parabolic integro-differential equations [J].
Wulan Li ;
Xu Da .
Computing, 2010, 90 :89-111
[29]   Compact Alternating Direction Implicit Scheme for Integro-Differential Equations of Parabolic Type [J].
Qiao, Leijie ;
Xu, Da .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) :565-582
[30]   Error Estimates of Semidiscrete Mixed Methods for Optimal Control Problems Governed by Parabolic Integro-differential Equations [J].
Hou T. .
Vietnam Journal of Mathematics, 2013, 41 (2) :149-160