Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells

被引:28
作者
Hussain, M. M. [1 ]
Song, D. [1 ]
Liu, Z. -S. [1 ]
Xie, Z. [1 ]
机构
[1] CNR, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
关键词
Ordered nanostructured CCL; PEM fuel cell; Carbon nanotube (CNT); Knudsen diffusion; MULTIWALLED CARBON NANOTUBES; MATHEMATICAL-MODEL; OXYGEN-REDUCTION; GAS-DIFFUSION; PERFORMANCE; ELECTRODES; DURABILITY; SUPPORT; MECHANISMS; SIMULATION;
D O I
10.1016/j.jpowsour.2010.10.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A 3D mathematical model of an ordered nanostructured cathode catalyst layer (CCL) has been developed for proton exchange membrane (PEM) fuel cells. In an ordered nanostructured CCL, carbon nanotubes (CNTs) are used as support material for Pt catalyst, upon which a thin layer of proton-conducting polymer (Nation) is deposited, which are then aligned along the main transport direction (perpendicular to the membrane) of various species. The model considers all the relevant processes in different phases of an ordered nanostructured CCL. In addition, the effect of Knudsen diffusion is accounted in the model. The model can predict not only the performance of an ordered nanostructured CCL at various operating and design conditions but also can predict the distributions of various fields in different phases of an ordered nanostructured CCL. The predicted nanostructured CCL performance with estimated membrane overpotential is validated with measured data found in the literature, and a good agreement is obtained between the model prediction and measured result. Moreover, a parametric study is conducted to investigate the effect of key design parameters on the performance of an ordered nanostructured CCL. In the absence of liquid water, it is found that oxygen diffusion in the pore phase is not the limiting factor for the performance of an ordered nanostructured CCL, owing to its parallel gas pores and high porosity. However, the transport of dissolved oxygen through the Nation phase has a significant effect on the performance of an ordered nanostructured CCL. Further, it is found that increasing the spacing between CNTs results in a considerable drop in the performance of an ordered nanostructured CCL at the base case conditions considered in the simulation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4533 / 4544
页数:12
相关论文
共 62 条
  • [1] Ajayan PM, 2001, TOP APPL PHYS, V80, P391
  • [2] Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding
    Baschuk, JJ
    Li, XH
    [J]. JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 181 - 196
  • [3] Carbon nanotubes - the route toward applications
    Baughman, RH
    Zakhidov, AA
    de Heer, WA
    [J]. SCIENCE, 2002, 297 (5582) : 787 - 792
  • [4] A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL
    BERNARDI, DM
    VERBRUGGE, MW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) : 2477 - 2491
  • [5] MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE
    BERNARDI, DM
    VERBRUGGE, MW
    [J]. AICHE JOURNAL, 1991, 37 (08) : 1151 - 1163
  • [6] Gas flow through highly porous graphite matrices
    Biloé, S
    Mauran, S
    [J]. CARBON, 2003, 41 (03) : 525 - 537
  • [7] Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction
    Bing, Yonghong
    Liu, Hansan
    Zhang, Lei
    Ghosh, Dave
    Zhang, Jiujun
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) : 2184 - 2202
  • [8] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [9] Chemistry and properties of nanocrystals of different shapes
    Burda, C
    Chen, XB
    Narayanan, R
    El-Sayed, MA
    [J]. CHEMICAL REVIEWS, 2005, 105 (04) : 1025 - 1102
  • [10] Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions
    Chen, Zhongwei
    Waje, Mahesh
    Li, Wenzhen
    Yan, Yushan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) : 4060 - 4063