[r, s, t]-colorings of fans

被引:0
作者
Liao, Wei [1 ]
Li, Mingchu [1 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian 116620, Peoples R China
基金
美国国家科学基金会;
关键词
r; s; t]-coloring; t]-chromatic number; wheels; friendship graphs; fans; NUMBERS; MOD;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given non-negative integers r, s and t, an [r, s, t]-coloring of a graph G = (V (G), E (G)) is a function c from V (G) boolean OR E(G) to the color set {0,1, ..., k - 1} such that vertical bar c(v(z)) - c(v(j))vertical bar >= r for every two adjacent vertices v(i), v(j), vertical bar c(e(i)) - c(e(j))vertical bar >= s for every two adjacent edges e(i), e(j), and vertical bar c(v(i)) - c(e(j))vertical bar >= t for all pairs of incident vertices v(z) and edges e(j). The [r, s, t]-chromatic number (Xr,s,t)(G) is the minimum k such that G admits an [r, s, t]-coloring. In this paper, we examine [r, s, t]-chromatic numbers of fans for every positive integer r, s and t.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
  • [1] [r, s, t]- Colorings of Friendship Graphs and Wheels
    Liao, Wei
    Li, Mingchu
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2275 - 2292
  • [2] A Note on [r, s, c, t]-Colorings of Graphs
    Sheng, Jian-Ting
    Liu, Gui-Zhen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (01) : 165 - 169
  • [3] (P, Q)-Total (r, s)-colorings of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Pruchnewski, Anja
    Voigt, Margit
    DISCRETE MATHEMATICS, 2015, 338 (10) : 1722 - 1729
  • [4] [1, 1, t]-Colorings of Complete Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Tuza, Zsolt
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1041 - 1050
  • [5] [r, s, t; f]-COLORING OF GRAPHS
    Yu, Yong
    Liu, Guizhen
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 105 - 115
  • [6] [r,s,t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[r,s,t]$$\end{document}-Colorings of Friendship Graphs and Wheels
    Wei Liao
    Mingchu Li
    Graphs and Combinatorics, 2015, 31 (6) : 2275 - 2292
  • [7] A study of the holomorphy of (r, s, t)-inverse loops
    Oyebo, Y. T.
    Jaiyeola, T. G.
    Adeniran, J. O.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (01) : 67 - 86
  • [8] [r, s, t]-coloring of trees and bipartite graphs
    Dekar, Lyes
    Effantin, Brice
    Kheddouci, Hamamache
    DISCRETE MATHEMATICS, 2010, 310 (02) : 260 - 269
  • [9] On properties of discrete (r, q) and (s, T) inventory systems
    Ang, Marcus
    Song, Jing-Sheng
    Wang, Mingzheng
    Zhang, Hanqin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 229 (01) : 95 - 105
  • [10] [r, s, t]-Coloring of the Joint Graph Cm VCn
    Pan Yumei
    Mo Mingzhong
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1939 - 1943